
Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

RPL2B001 PROGRAMMING FOR PROBLEM SOLVING USING C  
Course Outcomes  
The student will learn  

 To formulate simple algorithms for arithmetic and logical problems. 
 To translate the algorithms to programs (in C language). 
 To test and execute the programs and correct syntax and logical errors. 
 To implement conditional branching, iteration and recursion. 
 To decompose a problem into functions and synthesize a complete program using divide and conquer 

approach. 
 To use arrays, pointers and structures to formulate algorithms and programs. 
 To apply programming to solve matrix addition and multiplication problems and searching and sorting 

problems. 
 To apply programming to solve simple numerical method problems, namely rot finding of function, 

differentiation of function and simple integration. 

Contact hrs : 40  
Detailed contents  

Unit 1:  

Introduction to Programming (4 lectures)  
Introduction to components of a computer system (disks, memory, processor, where a program is stored and 

executed, operating system, compilers etc.) - (1 lecture).  

Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm: 

Flowchart/Pseudocode with examples. (1 lecture)  

From algorithms to programs; source code, variables (with data types) variables and memory  

locations, Syntax and logical errors in compilation, object and executable code- (2 lectures) 

Unit 2:  

Arithmetic expressions, operators and precedence (2 lectures)  

Conditional Branching and Loops (6 lectures)  

Writing and evaluation of conditionals and consequent branching (3 lectures)  

Iteration and loops (3 lectures)  

Arrays (6 lectures)  

Arrays (1-D, 2-D), Character arrays and Strings 

Unit 3:  

Function (5 lectures)  

Functions (including using built in libraries), Parameter passing in functions, call by value, Passing arrays to 

functions: idea of call by reference  

Recursion (4 lectures)  

Recursion as a different way of solving problems. Example programs, such as Finding Factorial, Fibonacci 

series, Ackerman function etc. Quick sort or Merge sort. 

Unit 4:  

Pointers (2 lectures)  

Idea of pointers, Defining pointers, Use of Pointers in self-referential structures, notion of linked list (no 

implementation). Dynamic memory allocation.  

Structure (4 lectures)  

Structures, Defining structures and Array of Structures, Structure vs Union.  

File handling: ASCII and binary Files (1 lecture)  

Unit 5:  

Basic Algorithms (6 lectures)  
Searching (Linear and Binary), Basic Sorting Algorithms (Bubble, Insertion, and Selection), Concepts of time 

and space complexity.  

Assignments: All lab should be handled in UNIX/LINUX environment.  

Minimum 3-5 problems should be implemented from Unit-2 to Unit-5 each..  

Suggested Text Books  
(i) Reema Thareja, Introduction to C Programming, 2nd Edition, Oxford University Press.  

(ii) E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill  



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

UNIT 1 

INTRODUCTION TO PROGRAMMING 

1. Introduction to components of a computer system 

 

INPUT UNIT: 

This unit contains devices that help to 

enter data into computer. 

CENTRAL PROCESSING UNIT(CPU): 

This is also considered as brain of 

computer. It has three parts 1. ALU 2. CU 

3. MU 

OUTPUT UNIT:  

This unit contains all devices that supply 

information to the outside world. 

STORAGE UNIT: 

The data and instructions that are supplied to the computer and supplied to outside the world are to be stored 

separately in the computer system. The storage unit or main storage is an integrated part of a computer system. 

 

Introduction to Operating System 

The operating system is system software which is loaded into memory of computer at the time of booting 

process. It remains in main memory all the time to control all the functionality of the computer system.  

These are the functionality of Operating 

System. 

1. DISK MANAGEMENT 

2. PROCESS MANAGEMENT 

3. I/O MANAGEMENT 

4. MEMORY MANAGEMENT 

5. DEVICE MANAGEMENT 

6. FILE MANAGEMENT 

AVAILABLE OS TODAY 

a. MS-DOS 

b. WINDOWS 

c. LINUX 

d. ANDROID 

Types of Computer Languages and Language Translators 

1. Machine Language 

2. Assembly Language 

3. High level Language 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

CONCEPT OF ASSEMBLER, COMPILER, LOADER, LINKER 

Compiler: 

The programs written in any high-level programming language (C or Pascal) needs to be converted into 

machine language or its equivalent. This is achieved by using a complier. 

 

Assembler: 

The program written in assembly language are symbolic representation of machine language. Assembler 

the language translator translate symbolic language to machine language. 

 

Linker: 

A linker is a system program that links together several object modules to form a single executable 

program. 

 

Loader: 

The part of operating system that load an executable file that reside in computer storage unit into main 

memory and execute it, 
 

 

 

 

 

 

 

 

 

Source code 

 

A program written in a high-level language is called source code. Source code is also called source 

program. Computer cannot understand the statements of high-level language. The source code cannot be 

executed by computer directly. It is converted into object code and  

then executed. 

 

 

 

 

Object code 

 

A program in machine language is called objet code. It is also called object program or machine code. 

Computer understands object code directly. 

 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 

 

 

 

 

 

 

 

 

 

 

 

 

Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm: 

Flowchart/Pseudo code with examples. (1 lecture)  

 

An algorithm is a step by step logical method to solve a problem. Efficiency of algorithm is how fast it can 

produce the correct result. The efficiency of algorithm is measured through time-complexity and space-

complexity. Analysis of algorithm: the time and space complexity is done through the asymptotic notation. 

 

Characteristics of an Algorithm 

1. Input: it may take zero or more input 

2. Output:  it should atleast produce one output 

3. Definiteness: each instruction must be clear and well defined 

4. Finiteness: it should be finite set of instructions 

5. Effectiveness: operation must be simple and carried out in finite time 

Pseudo code is a simple way of writing programming code in English. Pseudocode is not an actual 

programming language. It uses short phrases to write code for programs before you actually create it in a 

specific language. 

Flowchart: A flowchart is a pictorial representation of an algorithm in which the steps are drawn in the 

form of different shapes of boxes and the logical flow is indicated by interconnecting arrows. The boxes 

represent operations and the arrows represent the sequence in which the operations are implemented. The 

primary purpose of the flowchart is to help the programmer in understanding the logic of the program. 

Algorithms and flowcharts are two tools a software developer uses when creating new programs. An 

algorithm is a step-by-step recipe for processing data; it could be a process an online store uses to 

calculate discounts, for example. A flowchart graphically represents the steps a program or set of 

programs takes to process data. 

Program is a sequence of instructions in a particular programming language, written to perform a 

specified task on a computer. 

ALGORITHM: 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

Find largest number out of three numbers A, B, and C 

Step 1:  Start 

Step 2:  Read three numbers say A,B,C 

Step 3 :  Find the larger number between A and B and store it in MAX_AB. 

Step 4 :  Find the larger number between MAX_AB and C and store it in MAX. 

Step 5 :  Display MAX 

Step 6 :  Stop 

Errors in C 

 

 

 

 

 

 

 

 

 

Run in Turbo C compiler(16-bit) 
Syntax errors: Errors that occur when you violate the rules of writing C syntax. These are also called compile-

time error. Most frequent syntax errors are: 
Missing Parenthesis (}) 
Printing the value of variable without declaring it 

Missing semicolon like this ; 
 
/* syntax error */ 
#include<stdio.h>  
int main()  
{  
    int x = 10;  
    int y = 15;   
       
    printf("%d", (x, y)) // semicolon missed  
return 0; 
}  
 

Error: 

error: expected expression before '.' token 
     while(.)  
Run-time Errors : Errors which occur during program execution(run-time) after successful compilation 
are called run-time errors. 

/* run-time error   */ 
#include<stdio.h>  
void main()  
{  
    int n = 9, div = 0;  



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

     
    /*wrong logic  
       number is divided by 0,  
       so this program abnormally terminates */ 
    div = n/0;  
       
    printf("resut = %d", div);  
}  
 
Error: 
warning: division by zero [-Wdiv-by-zero] 
     div = n/0; 
 
Linker Errors: These error occurs when after compilation we link the different object files with main’s 
object using Ctrl+F9 key(RUN) in turbo C. 

/* linker error */ 
#include<stdio.h>  

   
void Main() // Here Main() should be main()  
{  
    int a = 10;  
    printf("%d", a);   
}  

Error: 
(.text+0x20): undefined reference to `main' 
 
Logical Errors : On compilation and execution of a program, desired output is not obtained when 
certain input values are given. 

/* logical error */ 
int main()  
{  
    int i = 0;  
   
    /* logical error : a semicolon after loop */ 
    for(i = 0; i < 3; i++);  
    {  
        printf("loop ");  
        continue;  
    }   
    getchar();  
    return 0;  
}  
No Output 
Semantic errors : This error occurs when the statements written in the program are not meaningful to the 

compiler. 

/* semantic error */ 

void main()  

{  

  int a, b, c;  

  a + b = c; //semantic error  

}  

Error 

 error: lvalue required as left operand of assignment 

 a + b = c; //semantic error 

 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

UNIT 2 

DATA TYPE, EXPRESSIONS, OPERATORS AND PRECEDENCE (2 LECTURES) 

CONDITIONAL BRANCHING AND LOOPS (6 LECTURES) 

Arrays (6 lectures) 

 

 

 

VARIABLE, CONSTANT, DATA TYPE, EXPRESSION, OPERATORS AND PRECEDENCE (ANSI) 

 

 

Variables and constants are the basic data objects manipulated in a program. Declarations list the variables to 

be used, and state what type they have and perhaps what their initial values are. Operators specify what is to 

be done to them. Expressions combine variables and constants to produce new values. The type of an object 

determines the set of values it can have and what operations can be performed on it. These building blocks are 

the topics of this chapter. The ANSI standard has made many small changes and additions to basic types and 

expressions. There are now signed and unsigned forms of all integer types, and notations for unsigned 

constants and hexadecimal character constants. Floating-point operations may be done in single precision; 

there is also a long double type for extended precision. String constants may be concatenated at compile time. 

Enumerations have become part of the language, formalizing a feature of long standing. Objects may be 

declared const, which prevents them from being changed. The rules for automatic coercions among arithmetic 

types have been augmented to handle the richer set of types. 

 

 

Variable Names: 
There are some restrictions on the names of variables and symbolic constants. Names are made up of letters 

and digits; the first character must be a letter. The underscore „„_‟‟ counts as a letter; it is sometimes useful for 

improving the readability of long variable names. Don‟t begin variable names with underscore, however, since 

library routines often use such names.  

Upper and lower case letters are distinct, so x and X are two different names. Traditional C practice is to use 

lower case for variable names, and all upper case for symbolic constants. Keywords like if, else, int, float, etc., 

are reserved: you can‟t use them as variable names. 

 

 

Data Types and Sizes: 
There are only a few basic data types in C: 

char  a single byte, capable of holding one character in the local character set 

int  an integer, typically reflecting the natural size of integers on the host machine 

float  single-precision floating point 

double  double-precision floating point 

 

In addition, there are a number of qualifiers that can be applied to these basic types. short and long apply to 

integers: 

short int sh; 

long int counter; 

 

Constants: 
An integer constant like 1234 is an int. A long constant is written with a terminal l (ell) or L, as in 

123456789L; an integer constant too big to fit into an int will also be taken as a long. Unsigned constants are 

written with a terminal u or U, and the suffix ul or UL indicates unsigned long. Floating-point constants 

contain a decimal point (123.4) or an exponent (1e-2) or both; their type is double, unless suffixed. The 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

suffixes f or F indicate a float constant; l or L indicate a long double. The value of an integer can be specified 

in octal or hexadecimal instead of decimal. A leading 0 (zero) on an integer constant means octal; a leading 0x 

or 0X means hexadecimal. For example, decimal 31 can be written as 037 in octal and 0x1f or 0x1F in hex. 

Octal and hexadecimal constants may also be followed by L to make them long and U to make them unsigned: 

0XFUL is an unsigned long constant with value 15 decimal. A character constant is an integer, written as one 

character within single quotes, such as ‟x‟. Certain characters can be represented in character and string 

constants by escape sequences like \n (newline); these sequences look like two characters, but represent only 

one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The character constant ‟\0‟ represents the character with value zero, the null character. ‟\0‟ is often written 

instead of 0 to emphasize the character nature of some expression, but the numeric value is just 0. 

 

Expression 

A constant expression is an expression that involves only constants. Such expressions may be evaluated at 

during compilation rather than run-time, and accordingly may be used in any place that a constant can occur, 

as in 

#define MAXLINE 1000 

char line[MAXLINE+1]; 

 

A string constant, or string literal, is a sequence of zero or more characters surrounded by double quotes, as in 

  "I am a string" 

The quotes “ “  or ‘’are not part of the string, but serve only to delimit it. 

 

The standard library function strlen(s) returns the length of its character string argument s, excluding 

the terminal ‟\0‟. Here is our version: 

/* strlen: return length of s */ 

int strlen(char s[]) 

{ 

int i; 

while (s[i] != ‟\0‟) 

++i; 

return i; 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

} 

strlen and other string functions are declared in the standard header <string.h>. 

 

There is one other kind of constant, the enumeration constant. An enumeration is a list of constant integer 

values, as in 

  enum boolean { NO, YES }; 

The first name in an enum has value 0, the next 1, and so on, unless explicit values are specified. If not all 

values are specified, unspecified values continue the progression from the last specified value, as the second of 

these examples: 

  enum escapes { BELL = ‟\a‟, BACKSPACE = ‟\b‟, TAB = ‟\t‟, NEWLINE = ‟\n‟, VTAB = ‟\v‟,   

                                       RETURN = ‟\r‟ }; 

  enum months { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC }; 

/* FEB = 2, MAR = 3, etc. */ 

Names in different enumerations must be distinct. Values need not be distinct in the same enumeration. 

 

 

Declarations: 
All variables must be declared before use, although certain declarations can be made implicitly by content. A 

declaration specifies a type, and contains a list of one or more variables of that type, as in 

 int lower, upper, step; 

 char c, line[1000]; 

Variables can be distributed among declarations in any fashion; the lists above could well be written as 

 int lower; 

 int upper; 

 int step; 

 char c; 

 char line[1000]; 

 

 

A variable may also be initialized in its declaration. If the name is followed by an equals sign and an 

expression, the expression serves as an initializer, as in 

 char esc = ‟\\‟; 

 int i = 0; 

 int limit = MAXLINE+1; 

 float eps = 1.0e-5; 

 

The qualifier const can be applied to the declaration of any variable to specify that its value will not be 

changed. For an array, the const qualifier says that the elements will not be altered. 

  const double e = 2.71828182845905; 

  const char msg[] = "warning: "; 

 

The const declaration can also be used with array arguments, to indicate that the function does not change that 

array: 

  int strlen(const char[]); 

Arithmetic Operators 
The binary arithmetic operators are +, -, *, /, and the modulus operator %. Integer division truncates any 

fractional part. The expression 

  x % y 

produces the remainder when x is divided by y.  

 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

For example, a year is a leap year if it is divisible by 4 but not by 100, except that years divisible by 400 are 

leap years. Therefore 

if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0) 

printf("%d is a leap year\n", year); 

else 

printf("%d is not a leap year\n", year); 

 

The % operator cannot be applied to a float or double. 

 

The binary + and - operators have the same precedence, which is lower than the precedence of *, / and %, 

which is in turn lower than unary + and -. Arithmetic operators associate left to right. 

 

Relational and Logical Operators 

The relational operators are 

  >  >=  <  <= 

They all have the same precedence. Just below them in precedence are the equality operators: 

  ==  != 

Relational operators have lower precedence than arithmetic operators, so an expression like i < lim-1 is taken 

as i < (lim-1), as would be expected. More interesting are the logical operators && and ||. Expressions 

connected by && or || are evaluated left to right, and evaluation stops as soon as the truth or falsehood of the 

result is known. The precedence of && is higher than that of ||, and both are lower than relational and equality 

operators, so expressions like 

  i < lim-1 && (c=getchar()) != ‟\n‟ && c != EOF 

need no extra parentheses. But since the precedence of != is higher than assignment, parentheses are needed in 

  (c=getchar()) != ‟\n‟ 

to achieve the desired result of assignment to c and then comparison with ‟\n‟. 

 

Type Conversions: 
When an operator has operands of different types, they are converted to a common type according to a small 

number of rules. In general, the only automatic conversions are those that convert a „„narrower‟‟ operand into 

a „„wider‟‟ one without losing information, such as converting an integer into floating point in an expression 

like f + i. Expressions that don‟t make sense, like using a float as a subscript, are disallowed. Expressions that 

might lose information, like assigning a longer integer type to a shorter, or a floating-point type to an integer, 

may draw a warning, but they are not illegal. 

/* atoi: convert s to integer */ 

int atoi(char s[]) 

{ 

int i, n; 

n = 0; 

for (i = 0; s[i] >= ‟0‟ && s[i] <= ‟9‟; ++i) 

n = 10 * n + (s[i] - ‟0‟); 

return n; 

} 

As we discussed the expression  

  s[i] - ‟0‟ 

gives the numeric value of the character stored in s[i], because the values of ‟0‟, ‟1‟, etc., form a contiguous 

increasing sequence. 

Another example of char to int conversion is the function lower, 

/* lower: convert c to lower case; ASCII only */ 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

int lower(int c) 

{ 

if (c >= ‟A‟ && c <= ‟Z‟) 

return c + ‟a‟ - ‟A‟; 

else 

return c; 

} 

Relational expressions like i > j and logical expressions connected by && and || are defined to have value 1 if 

true, and 0 if false. Thus the assignment 

  d = c >= ‟0‟ && c <= ‟9‟ 

sets d to 1 if c is a digit, and 0 if not 

 

Finally, explicit type conversions can be forced („„coerced‟‟) in any expression, with a unary operator called a 

cast. In the construction 

  (type name) expression  

the expression is converted to the named type  

 

Increment and Decrement Operators: 
C provides two unusual operators for incrementing and decrementing variables. The increment operator ++ 

adds 1 to its operand, while the decrement operator -- subtracts 1. 

 

Bitwise Operators 

C provides six operators for bit manipulation; these may only be applied to integral operands, that is, char, 

short, int, and long, whether signed or unsigned. 

&  bitwise AND 

|  bitwise inclusive OR 

^  bitwise exclusive OR 

<<  left shift 

>>  right shift 

~  one‟s complement (unary) 

The bitwise AND operator & is often used to mask off some set of bits, for example 

n = n & 0177; 

sets to zero all but the low-order 7 bits of n. 

 

Assignment Operators and Expressions: 
An expression such as 

i = i + 2 

in which the variable on the left side is repeated immediately on the right, can be written in the compressed 

form 

i += 2 

The operator += is called an assignment operator. 

Most binary operators (operators like + that have a left and right operand) have a corresponding assignment 

operator op=, 

where op is one of 

 +  -  *  /  %  <<  >>  &  ^  | 

If expr1 and expr2 are expressions, then 

expr1 op= expr2 

is equivalent to 

expr1 = (expr1) op (expr2) 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

except that expr1 is computed only once. Notice the parentheses around expr2: 

x *= y + 1 

means 

x = x * (y + 1) 

 Conditional Expressions 
The statements 

if (a > b) 

z = a; 

else 

z = b; 

compute in z the maximum of a and b. The conditional expression, written with the ternary operator „„?:‟‟, 

provides an alternate way to write this and similar constructions. In the expression 

  expr1 ? expr2 : expr3 

the expression expr1 is evaluated first. If it is non-zero (true), then the expression expr2 is evaluated, and that 

is the value of the conditional expression. Otherwise expr3 is evaluated, and that is the value. Only one of 

expr2 and expr3 is evaluated. 

 

Precedence and Order of Evaluation: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 

Multiple Choice Questions 

1. Which byte order is followed by Motorola Processors? 

 a. Little-Endian           b. Big-Endian  

  c. Bi-Endian  d. None  

2. The relational operator == (equality) always returns  

 a. 0   

        b. 1  

        c. 0 or 1  

 d.  None  

 3. which modifier doubles range of data types  

 a. signed   

 b. unsigned   

 c. short   

 d. long  

4. Find out the output  

 void main()  

 {  

  printf("%d",4.5);  

 }  

  a. 4  

  b. 5  

  c. garbage  

  d. None of these  

5. main()  

{  

 float x=4.6;  

 if(x==4.6)  

  printf(“hello”);  

 else  

  printf(“bye”) ; 

}  

Ans : bye 

6. Find out the output  

      void main()  

      {  

           char x=-130;  

           char y=-5;  

           printf("%d",x+y);  

      }  

          a. -135  

b. -3  

          c. 7  

          d. 121  

 

 

 

7. Find out the output  

 void main()  

 {  

  unsigned int x=500;  

  int y=-5;  

  if(x>y)  



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

   printf("Hello");  

  else  

   printf("Hi");   

 } 

 Ans: hi  

8. Find the output 

 void main()  

 {  

  int a=8,x;  

  x=++a + ++a + ++a;  

  printf("%d",x);     

 }  

 a.  33   

 b.  32   

 c.  31  

 d.  None  

9. Bitwise operators are applicable only on  

 a. integers    

 b. integers and characters 

 c. integers and floats 

 d. integers,floats,and doubles  

10. Find the output 

 void main()  

 {  

  int x,y;  

  x=10;  

  y=sizeof(++x);  

  printf("x=%d  y=%d",x,y);  

 }  

 a.  x=10 y=2  

 b.  x=10 y=4  

 c.  Compilation error    

 d.  None of these  

11. Which operator is used both as an operator and keyword? 

           a. Right shifting operator  

  b. cast operator  

             c. sizeof operator 

  d. Token pasting operator  

 

12. Find the output  

 void main()  

 {  

 int i,j=1;  

 for(i=1;i<=5;i++)  

 {  

  while(j<=5)  

  {  

   printf("%d",i+j);  

   if(i==j)  

    break;  

   j++;                                           

  }  

 }     

 } 

a. 2 3 4 5 6 7 8,9,10 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

b. 2 3 4 5 5 6 ,7,8 

c. Compilation error  

d. None of these  

 

13. Find the output  

void main()  

{  

 int num=345,m,sum=0;  

 do  

 {  

  m=num%10;  

  num=num/10;  

  continue;  

  sum=sum*10+m;  

 } while(num!=0);  

 printf("%d",sum);  

} 

a. 3 4 5  

b. 5 4 3   

c. 0  

d. None of these  

 

14. main()  

{  

 int x;  

 int a=5;  

 x= 30 || --a;  

 printf("%d",a);  

}   

Ans: 5 

15. main()  

{  

 int a=5,b=5,c=5;  

 if(a==b==c)  

  printf("delhi challo");  

 else  

  printf("do or die");  

}   

Ans: do or Die 

16. Which of the following is correct declaration? 

a) int age; 

b) short age; 

c) Long age; 

d) All the above  

 

17. Comment on the below statement  

while(0==0)  

{  

 

}   

a. It has a syntax error  

b. It will run for ever  

c. It will compare 0 with 0 and they are equal so its exit the loop  

d.  none  

18. main()  



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

{  

 int i=1;  

 while(i<=5)  

 {  

  printf("%d",i);   

    

  if(i==2)  

   continue;  

  i++;  

 }  

}  

Out:1 2 2 2 2 2   … 

 

 

 

 

CONDITIONAL BRANCHING AND LOOPS: 

1. Statements and Blocks 

2. If-Else 

3. Else-If 

4. Switch 

5. Loops - While and For 

6. Loops - Do-While 

7. Break and Continue 

8. Goto and labels 

 

 

C provides the fundamental control-flow constructions required for well-structured programs: statement 

grouping, decision making (if-else), selecting one of a set of possible values (switch), looping with the 

termination test at the top (while, for) or at the bottom (do), and early loop exit (break). 

 

Statements and Blocks: 

An expression such as x = 0 or i++ or printf(...) becomes a statement when it is followed by a semicolon, as in 

x = 0; 

i++; 

printf(...); 

In C, the semicolon is a statement terminator.  

Block: Braces { and } are used to group declarations and statements together into a compound statement, or 

block, so that they are syntactically equivalent to a single statement. 

 

Decision Making: 

 

 

 

 

 

 

 

 

 

 

 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 

 

IF STATEMENT IN C 
if statement is the most simple decision making statement. It is used to decide whether a 
certain statement or block of statements will be executed or not i.e if a certain condition is true 
then a block of statement is executed otherwise not. 
 
 
Syntax: 
if(condition)  
{ 
   // Statements to execute if 
   // condition is true 
} 
 

Here, condition after evaluation will be either true or false. C if statement accepts boolean values – if 

the value is true then it will execute the block of statements below it otherwise not. If we do not provide 

the curly braces ‘{‘ and ‘}’ after if(condition) then by default if statement will consider the first 

immediately below statement to be inside its block. 

Example:           Flowchart 

 

if(condition) 
   statement1; 
   statement2; 
 
/*Here if the condition is true, if block  
    will consider only statement1 to be inside  
    its block. */ 
 

 

 

 

 

 

 

/* C program to illustrate If statement */ 
#include <stdio.h>  
   
int main() {  
    int i = 10;  
   
    if (i > 15)  
    {  
       printf("10 is less than 15");  
    }      
      



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

    printf("I am Not in if");  
 

return 0; 

 

}  

 

 

Output: 
I am Not in if 

 
 

IF-ELSE IN C 
The if statement alone tells us that if a condition is true it will execute a block of statements and 
if the condition is false it won’t. But what if we want to do something else if the condition is 
false. Here comes the C else statement. We can use the else statement with if statement to 
execute a block of code when the condition is false. 
 
Syntax:          Flowchart: 
if (condition) 
{ 
    /* Executes this block if 
       condition is true*/ 
} 
else 
{ 
    /* Executes this block if 
       condition is false */ 
} 
 
 
 
 

 

Example: 

/* C program to illustrate If statement */ 
#include <stdio.h>  
   
int main() {  
    int i = 20;  
   
    if (i < 15)  
        printf("i is smaller than 15");  
    else 
        printf("i is greater than 15");  
               
    return 0;      
}  
 

Output: 
i is greater than 15 

 

 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 

NESTED-IF IN C 

A nested if in C is an if statement that is the target of another if statement. Nested if statements means 

an if statement inside another if statement. Yes, C allows us to nested if statements within if statements, 

i.e, we can place an if statement inside another if statement. 

 
 
 
 
 
Syntax:        Flowchart 
if (condition1)  
{ 
   // Executes when condition1 is true 
   if (condition2)  
   { 
      // Executes when condition2 is true 
   } 
} 

 

Example: 

/* C program to illustrate nested-if 

statement */ 
#include <stdio.h>  
   
int main() {  
    int i = 10;  
   
    if (i == 10)  
    {  
        /* First if statement */ 
        if (i < 15)  
           printf("i is smaller than 15\n");  
   
        /* Nested - if statement  
           Will only be executed if statement above  
           is true  */ 
        if (i < 12)  
            printf("i is smaller than 12 too\n");  
        else 
            printf("i is greater than 15");  
    }  
   
    return 0;  
}  

 
Output: 
i is smaller than 15 
i is smaller than 12 too 
 

 
 
 
 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 
IF-ELSE-IF LADDER IN C 

 
Here, a user can decide among multiple options. The C if statements are executed from the top down. 

As soon as one of the conditions controlling the if is true, the statement associated with that if is 

executed, and the rest of the C else-if ladder is bypassed. If none of the conditions are true, then the 

final else statement will be executed. 

 
 
 
 
 
 
 
 
Syntax: 
if (condition) 
    statement; 
else if (condition) 
    statement; 
.  
. 
else 
    statement; 
 

 
 

 

 

 

 

/* C program to illustrate nested-if statement */ 
#include <stdio.h>  
   
int main() {  
    int i = 20;  
    
    if (i == 10)  
        printf("i is 10");  
    else if (i == 15)  
        printf("i is 15");  
    else if (i == 20)  
        printf("i is 20");  
    else 
        printf("i is not present");  
 

return 0; 

}  
Output: 
i is 20 
 

 
 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

Loop Structure 

Iteration statements specify looping. 

 

iteration-statement: 

1. while (expression) statement 

2. do statement while (expression); 

3. for (expression1; expression2; expression3) statement 

 

In the while and do statements, the sub-statement is executed repeatedly so long as the value of the 

expression remains true. 

 

In the for statement, the first expression is evaluated once, and thus specifies initialization for the loop. 

There is no restriction on its type. The second expression must have arithmetic or pointer type; it is 

evaluated before each iteration, and if it becomes equal to 0, the for is terminated. The third expression is 

evaluated after each iteration, and thus specifies a re-initialization for the loop. 

 
for (expression1; expression2; expression3) statement 

 
is equivalent to 

expression1; 

while (expression2) { 

statement 
expression3; 

} 

Note: expressions are optional in for loop; expressionopt 

 

UN-CONDITIONAL CONTROL FLOW STATEMENT 

 

Jump statements 

Jump statements transfer control unconditionally. 

 jump-statement-type: 

goto identifier; 

continue; 

break; 

return expressionopt; 

 

A continue statement may appear only within an iteration statement. It causes control to pass to the 

loop-continuation portion of the smallest enclosing such statement i.e beginning of loop. More precisely, 

within each of the 

statements 
while (...) {  do {    for (...) { 

...     ...      ... 

continue ;    continue ;     continue ; 

}   } while (...);    } 

 

 

 

 

A break statement may appear only in an iteration statement or a switch statement, and terminates 

execution of the smallest enclosing such statement; control passes to the statement following the 

terminated statement. 

 

A function returns to its caller by the return statement. When return is followed by an expression, the 

value is returned to the caller of the function. The expression is converted, as by assignment, to the type 

returned by the function in which it appears. 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 

 

Q.1                    * 
                * * * 
             * * * * * 
         * * * * * * * 
      * * * * * * * * * 

 include "stdio.h" 
main() 
{ 
        int i,j,n,sp,st=1; 
        printf("Enter total rows"); 
        scanf("%d",&n); 
        sp=n-1; 
        for(i=1;i<=n;i++) 
        { 
                for(j=1;j<=sp;j++) 
                        printf(" "); 
                for(j=1;j<=st;j++) 
                        printf("*"); 
                printf("\n"); 
                sp=sp-1; 
                st=st+2; 
        } 
} 

Q.2      1 
   121 
  12321 
 1234321 
123454321 

 #include "stdio.h" 
main() 
{ 
        int i,j,n,sp; 
        printf("Enter total rows"); 
        scanf("%d",&n); 
        sp=n-1; 
        for(i=1;i<=n;i++) 
        { 
                for(j=1;j<=sp;j++) 
                        printf(" "); 
                for(j=1;j<=i;j++) 
                        printf("%d",j); 
                for(j=i-1;j>=1;j--) 
                        printf("%d",j); 
                printf("\n"); 
                sp=sp-1; 
        } 
} 

 
 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 

 

 

 

 

Arrays 

Let is write a program to count the number of occurrences of each digit, of white space characters (blank, tab, 

newline), and of all other characters. This is artificial, but it permits us to illustrate several aspects of C in one 

program. There are twelve categories of input, so it is convenient to use an array to hold the number of 

occurrences of each digit, rather than ten individual variables. Here is one version of the program: 

 

#include <stdio.h> 

/* count digits, white space, others */ 

main() 

{ 

int c, i, nwhite, nother; 

int ndigit[10]; 

nwhite = nother = 0; 

for (i = 0; i < 10; ++i) 

ndigit[i] = 0; 

while ((c = getchar()) != EOF) 

if (c >= ‟0‟ && c <= ‟9‟) 

++ndigit[c-‟0‟]; 

else if (c == ‟ ‟ || c == ‟\n‟ || c == ‟\t‟) 

++nwhite; 

1 How many statements falls under the default scope of a control structure? 

Ans A single statement falls under the default scope of the control structure. 

2 Which loop is called an exit control loop 

Ans Do while 

3 What is ‘hanging if’ statement in C? 

Ans The statement which is neither part of “if” nor part of “else” statement, but it is ‘on fly’ is known as 
‘hanging if’ statement. ‘hanging if’ statement is not allowed in C. 

4 In case of switch and if else statement , which is faster execution 

Ans ‘Switch’ statement is faster than the ‘if else’ statement, because in ‘switch’ statement execution 
starts from the match case. The ‘if else’ execution starts from the beginning of ‘if’. 

5 What is the difference between for loop and while loop 

Ans For loop is suitable if number of repetition is known , but while loop is suitable if number of 
repetition is unknown in advance 

6 What is the difference between break and return statement 

Ans Break statement  transfer cursor just outside loop and switch case, but return statement transfer 
cursor to end of the function 

7 What is the difference between return and exit statement 

Ans Return and exit statement, both are same inside main function , but both are different in other 
functioin. In other function return terminate the function but exit terminate the program 

8 Why “goto” statement is not used in a program 

Ans “goto” statement is an unconditional jump control structure. It is suggested that not to use in a 
program , because it affects other control structure in a program 

9 What is the difference between break and continue statement 

Ans Break statement transfer cursor to outside loop and switch case ,but continue statement transfer 
control to beg of the loop 

10 How to write a program in c , that a loop will continue 2^100 times 

Ans According to range of data types in C, a variable maximum range is 2^64 , if the variable value 
beyond maximum range, then the loop becomes infinite. So to overcome this type of program , 
nested loop is required 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

else 

++nother; 

printf("digits ="); 

for (i = 0; i < 10; ++i) 

printf(" %d", ndigit[i]); 

printf(", white space = %d, other = %d\n", 

nwhite, nother); 

} 

The output of this program on itself is 

digits = 9 3 0 0 0 0 0 0 0 1, white space = 123, other = 345 

 

Q.1 Write a program to find the second largest element in an array 

 #include "stdio.h" 

int SecondLargest(int [],int); 

main() 

{ 

        int x[8]={10,4,90,11,34,22,19,45}; 

        int k=SecondLargest(x,8); 

        printf("%d",k); 

} 

int SecondLargest(int x[],int size) 

{ 

        int max1=x[0]; 

        int max2=x[0]; 

        int i,temp; 

        for(i=1;i<size;i++) 

        { 

                if(max1 < x[i]) 

                        max1=x[i]; 

                if(max2 < max1) 

                { 

                        temp=max2; 

                        max2=max1; 

                        max1=temp; 

                } 

        } 

        return max1; 

} 

Q.2 Write a program to reverse a string 

 #include "stdio.h" 

#include "string.h" 

void reverse(char []); 

main() 

{ 

        char x[]="alok das"; 

        reverse(x); 

        printf("%s",x); 

} 

void reverse(char x[]) 

{ 

        int i=0,j=strlen(x)-1; 

        char temp; 

        while(i<j) 

        { 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

                temp=x[i]; 

                x[i]=x[j]; 

                x[j]=temp; 

                i++; 

                j--; 

        } 

} 

Q.3 Write a program to convert a string into toggle case 

 #include "stdio.h" 

#include "string.h" 

void toggle(char []); 

void lower(char []); 

main() 

{ 

        char x[]="india is the best"; 

        toggle(x); 

        printf("%s",x); 

} 

void upper(char x[]) 

{ 

        int i; 

        for(i=0;i<strlen(x);i++) 

        { 

                if(x[i]>=97 && x[i]<=122) 

                        x[i]=x[i]-32; 

        } 

} 

void toggle(char x[]) 

{ 

        upper(x); 

        x[0]=x[0]+32; 

        int i; 

        for(i=1;i<strlen(x);i++) 

        { 

                if(x[i]==' ') 

                        x[i+1]=x[i+1]+32; 

        } 

} 

Q.4 Write a program to compare between two string without using strcmp() function 

 #include "stdio.h" 

#include "string.h" 

int mystrcmp(char [],char []); 

main() 

{ 

        int x; 

        x=mystrcmp("abc","abc"); //0 

        x=mystrcmp("akc","abc"); //1 

        x=mystrcmp("abc","akc"); //-1 

} 

int mystrcmp(char x[],char y[]) 

{ 

        int i=0,j=0; 

        while(i<strlen(x) || j<strlen(y)) 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

        { 

                if(x[i]!=y[j]) 

                { 

                        if(x[i] > y[j]) 

                                return 1; 

                        else 

                                return -1; 

                } 

                i++; 

                j++; 

        } 

        return 0; 

} 

Q.5 Write program  to find gcd of all numbers present in an array 

 #include "stdio.h" 

int gcd(int ,int); 

main() 

{ 

        int x[8]={10,4,90,11,34,22,19,45}; 

        int k=x[0]; 

        int i; 

        for(i=1;i<8;i++) 

        { 

                k=gcd(k,x[i]); 

        } 

        printf("%d",k); 

} 

int gcd(int a,int b) 

{ 

        int c; 

        while((c=a%b)!=0) 

        { 

                a=b; 

                b=c; 

        } 

        return b; 

} 

 

TWO-DIMENSIONAL ARRAY 

C provides rectangular multi-dimensional arrays, although in practice they are much less used than arrays of 

pointers. In this section, we will show some of their properties. Consider the problem of date conversion, from 

day of the month to day of the year and vice versa. For example, March 1 is the 60th day of a non-leap year, 

and the 61st day of a leap year. Let us define two functions to do the conversions: day_of_year converts the 

month and day into the day of the year, and month_day converts the day of the year into the month and day. 

Since this latter function computes two values, the month and day arguments will be pointers: 

month_day(1988, 60, &m, &d) 

sets m to 2 and d to 29 (February 29th). 

 

 

 

These functions both need the same information, a table of the number of days in each month („„thirty days 

hath September ...‟‟). Since the number of days per month differs for leap years and non-leap years, it‟s easier 

to separate them into two rows of a two-dimensional array than to keep track of what happens to February 

during computation. The array and the functions for performing the transformations are as follows: 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 

static char daytab[2][13] = { 

{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, 

{0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31} 

}; 

 

/* day_of_year: set day of year from month & day */ 

int day_of_year(int year, int month, int day) 

{ 

int i, leap; 

leap = year%4 == 0 && year%100 != 0 || year%400 == 0; 

for (i = 1; i < month; i++) 

day += daytab[leap][i]; 

return day; 

} 

/* month_day: set month, day from day of year */ 

void month_day(int year, int yearday, int *pmonth, int *pday) 

{ 

int i, leap; 

leap = year%4 == 0 && year%100 != 0 || year%400 == 0; 

for (i = 1; yearday > daytab[leap][i]; i++) 

yearday -= daytab[leap][i]; 

*pmonth = i; 

*pday = yearday; 

} 

 

 

Recall that the arithmetic value of a logical expression, such as the one for leap, is either zero (false) or one 

(true), so it can be used as a subscript of the array daytab. The array daytab has to be external to both 

day_of_year and month_day, so they can both use it. We made it char to illustrate a legitimate use of char for 

storing small non-character integers. daytab is the first two-dimensional array we have dealt with. In C, a two-

dimensional array is really a one-dimensional array, each of whose elements is an array. Hence subscripts are 

written as 

 

daytab[i][j] /* [row][col] */ 

 

rather than 

daytab[i,j] /* WRONG */ 

 

Other than this notational distinction, a two-dimensional array can be treated in much the same way as in other 

languages. Elements are stored by rows, so the rightmost subscript, or column, varies fastest as elements are 

accessed in storage order. An array is initialized by a list of initializers in braces; each row of a two-

dimensional array is initialized by a corresponding sub-list. We started the array daytab with a column of zero 

so that month numbers can run from the natural 1 to 12 instead of 0 to 11. Since space is not at a premium 

here, this is clearer than adjusting the indices. If a two-dimensional array is to be passed to a function, the 

parameter declaration in the function must include the number of columns; the number of rows is irrelevant, 

since what is passed is, as before, a pointer to an array of rows, where each row is an array of 13 ints. In this 

particular case, it is a pointer to objects that are arrays of 13 ints. Thus if the array daytab is to be passed to a 

function f, the declaration of f would be: 

 

f(int daytab[2][13]) { ... } 

It could also be 

f(int daytab[][13]) { ... } 

 

 

 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 

LABORATORY EXPERIMENT 

 

Q.1 Write a program for matrix multiplication 

 #include "stdio.h" 
#include "string.h" 
main() 
{ 
        int x[3][3]; 
        int y[3][3]; 
        int z[3][3]; 
        int i,j,k; 
        printf("input elements for matrix x\n"); 
        for(i=0;i<3;i++) 
        { 
                for(j=0;j<3;j++) 
                { 
                        scanf("%d",&x[i][j]); 
                } 
        } 
        printf("input elements for matrix y\n"); 
        for(i=0;i<3;i++) 
        { 
                for(j=0;j<3;j++) 
                { 
                        scanf("%d",&y[i][j]); 
                } 
        } 
        memset(z,0,sizeof(z)); 
        //matrix multiplication 
        for(i=0;i<3;i++) 
        { 
                for(j=0;j<3;j++) 
                { 
                        for(k=0;k<3;k++) 
                        { 
                                z[i][j]=z[i][j]+x[i][k]*y[k][j]; 
                        } 
                } 
        } 
        //traverse matrix 
        for(i=0;i<3;i++) 
        { 
                for(j=0;j<3;j++) 
                { 
                        printf("%d ",z[i][j]); 
                } 
                printf("\n"); 
        } 
} 

Q.2 Write a program to transpose a matrix 

 #include "stdio.h" 
#include "string.h" 
main() 
{ 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

        int x[3][5]; 
        int y[5][3]; 
        int i,j,k; 
        printf("input elements for matrix x\n"); 
        for(i=0;i<3;i++) 
        { 
                for(j=0;j<5;j++) 
                { 
                        scanf("%d",&x[i][j]); 
                } 
        } 
   //transpose  
     for(i=0;i<3;i++) 
        { 
                for(j=0;j<5;j++) 
                { 
                        y[j][i]=x[i][j]; 
                } 
        } 
        //traverse matrix y 
        for(i=0;i<5;i++) 
        { 
                for(j=0;j<3;j++) 
                { 
                        printf("%d ",y[i][j]); 
                } 
                printf("\n"); 
        } 
} 

Q.3 Write a program to check a matrix is sparse matrix or not 

 //zero dominated matrix 
 
#include "stdio.h" 
#include "string.h" 
main() 
{ 
        int x[5][5]; 
        int i,j,counter=0; 
        int size=sizeof(x)/sizeof(int); 
 
        printf("input elements for matrix x\n"); 
        for(i=0;i<5;i++) 
        { 
                for(j=0;j<5;j++) 
                { 
                        scanf("%d",&x[i][j]); 
                } 
        } 
        for(i=0;i<5;i++) 
        { 
                for(j=0;j<5;j++) 
                { 
                        if(x[i][j]==0) 
                                counter++; 
                } 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

        } 
        if(counter > size/2) 
                printf("It is sparse matrix"); 
        else 
                printf("Not a sparse matrix"); 
} 

Q.4 Write a program remove vowel from a string 

 #include "stdio.h" 
#include "string.h" 
main() 
{ 
        char x[]="india is the best"; 
        int i=0,k; 
        while(i<strlen(x)) 
        { 
                if(x[i]=='a' || x[i]=='e' || x[i]=='i' || x[i]=='o' || x[i]=='u') 
                { 
                        for(k=i;k<strlen(x);k++) 
                                x[k]=x[k+1]; 
                } 
                else 
                        i++; 
        } 
        printf("%s",x); 
} 

Q.5 write a program to remove duplicate element from an array 

 #include "stdio.h" 
main() 
{ 
        int x[8]={10,20,10,10,30,20,40,10}; 
        int i,j,k,n=8; 
        for(i=0;i<8;i++) 
        { 
                j=i+1; 
                while(j<n) 
                { 
                        if(x[i]==x[j]) 
                        { 
                                for(k=j;k<n;k++) 
                                        x[k]=x[k+1]; 
 
                                n--; 
                        } 
                        else 
                                j++; 
                } 
        } 
 
        for(i=0;i<n;i++) 
                printf("%d ",x[i]); 
} 

 

 

 

 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 

UNIT 3 

FUNCTION (5 LECTURES) 

RECURSION (4 LECTURES) 

 

 

 

FUNCTION 

In C, a function is equivalent to a subroutine or function in Fortran, or a procedure or function in Pascal. A 

function provides a convenient way to encapsulate some computation, which can then be used without 

worrying about its implementation. With properly designed functions, it is possible to ignore how a job is 

done; knowing what is done is sufficient. C makes the sure of functions easy, convenient and efficient; you 

will often see a short function defined and called only once, just because it clarifies some piece of code. 

 

A function definition has this form: 

return-type function-name(parameter declarations, if any) 

{ 

declarations 

statements 

} 

 

Function definitions can appear in any order, and in one source file or several, although no function can be 

split between files. If the source program appears in several files, you may have to say more to compile and 

load it than if it all appears in one, but that is an operating system matter, not a language attribute. For the 

moment, we will assume that both functions are in the same file, so whatever you have learned about running 

C programs will still work. 

 

We will generally use parameter for a variable named in the parenthesized list in a function. The terms formal 

argument and actual argument are sometimes used for the same distinction. 

 

The declaration 

   int power(int base, int n); 

just before main says that power is a function that expects two int arguments and returns an int. This 

declaration, which is called a function prototype, has to agree with the definition and uses of power. It is an 

error if the definition of a function or any uses of it do not agree with its prototype. parameter names need not 

agree. Indeed, parameter names are optional in a function prototype, so for the prototype we could 

have written 

int power(int, int); 

 

Q.1 What is function ? what is the application of the function ? 

Ans A function is set of statements which are encapsulated together to perform a specific task.  
It is suitable to modularize the program , that’s why  language able to create a library and recursively 
use the code. 

Q.2 What is function recursion ? what is the application of function recursion 

Ans When a function call to itself is known as function recursion and it is suitable  for quick sort,heap sort, 
merge sort, tower of Hanoi and tree traversal programming 

Q.3 What is the difference between header file and library? 

Ans Header file contains function declaration , but library contains function definition 

Q.4 What is user define function? 

Ans The function which has no header and library is called a user define  function 

Q.5 What is the advantage of modular style over monolithic style c programming 

Ans Modular style gives clear image of a program but monolithic style doesn’t give clear image of a 
program. Function recursion and library only possible if code is written in modular style. 

Q.6 What is the difference between actual parameters and formal parameters 

Ans Actual parameters allocate memory , but formal parameters doesn’t allocate memory 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

Q.7 What is the difference between call by value and call by address  

Ans In case of call by value , change the value in function definition , that doesn’t change value in it’s main 
function. But in case of call by address ,change the value in function definition that will change in main 
function.  

Q.8 What is the difference between function and method 

Ans When a function is define inside a class is called method. All methods are function but all function are 
not method. (Method is a c++ concept) 

Q.9 What is the difference between loop control structure and function recursion 

Ans Loop control structure doesn’t allocate memory , but funtioin recursion allocate memory 

Q.10 What is function over-heading and function over-loading 

Ans When the control transfer to a function it takes time, when a function is push in stack also takes time, 
when control return from a function it takes time, when function is pop also takes time, all together is 
called function over-heading. 
When multiple functions are defined having same name is called function over loading which is a c++ 
concept. 

 

PROBLEMS 

 

Q.1 Write a program to find GCD of any two numbers using function 

 #include "stdio.h" 

int gcd(int,int); 

main() 

{ 

        int a,b,x; 

        printf("enter any two numbers"); 

        scanf("%d%d",&a,&b); 

        x=gcd(a,b); 

        printf("%d",x); 

} 

int gcd(int a, int b) 

{ 

        int c; 

        while((c=a%b)!=0) 

        { 

                a=b; 

                b=c; 

        } 

        return b; 

} 

Q.2 Write a program to  reverse a number using function 

 #include "stdio.h" 

int reverse(int); 

main() 

{ 

        int n,x; 

        printf("enter any two numbers"); 

        scanf("%d",&n); 

        x=reverse(n); 

        printf("%d",x); 

} 

int reverse(int n) 

{ 

        int s=0; 

        while(n>0) 

        { 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

                s=s*10 + n%10; 

                n=n/10; 

        } 

        return s; 

} 

Q.3 Write a program to find sum of digits of a number using function 

 #include "stdio.h" 

int sumofdigits(int); 

main() 

{ 

        int n,x; 

        printf("enter any two numbers"); 

        scanf("%d",&n); 

        x=sumofdigits(n); 

        printf("%d",x); 

} 

int sumofdigits(int n) 

{ 

        int s=0; 

        while(n>0) 

        { 

                s=s + n%10; 

                n=n/10; 

        } 

        return s; 

} 

Q4. Write a program to check a given number is prime or not using function 

 #include "stdio.h" 

int prime(int); 

main() 

{ 

        int n,x; 

        printf("enter any two numbers"); 

        scanf("%d",&n); 

        x=prime(n); 

        if(x==2) 

                printf("Prime"); 

        else 

                printf("Not prime"); 

} 

int prime(int n) 

{ 

        int i,count=0; 

        for(i=1;i<=n;i++) 

        { 

                if(n%i==0) 

                        count++; 

        } 

        return count; 

} 

Q.5 Write a program count no of even digits present in a number using function 

 #include "stdio.h" 

int CountEvenDigits(int); 

main() 

{ 

        int n,x; 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

        printf("enter any two numbers"); 

        scanf("%d",&n); 

        x=CountEvenDigits(n); 

        printf("%d",x); 

} 

int CountEvenDigits(int n) 

{ 

        int r,count=0; 

        while(n>0) 

        { 

                r=n%10; 

                if(r%2==0) 

                        count++; 

                n=n/10; 

        } 

        return count; 

} 

Function Recursion: 

C functions may be used recursively; that is, a function may call itself either directly or indirectly.  

 

For example Consider printing a number as a character string.  

 

Another good example of recursion is quicksort, a sorting algorithm developed by C.A.R. Hoare in 1962. 

Given an array, one element is chosen and the others partitioned in two subsets - those less than the partition 

element and those greater than or equal to it. The same process is then applied recursively to the two subsets. 

When a subset has fewer than two elements, it doesn‟t need any sorting; this stops the recursion. 

 

Q.1 Write a program to display all number from 1 to 100 those are power of 2 using function recursion 

 #include "stdio.h" 

void powerof2(int,int); 

main() 

{ 

        powerof2(1,100); 

} 

void powerof2(int i,int j) 

{ 

        if(i<=j) 

        { 

                if( (i&i-1)==0) 

                        printf("%d ",i); 

                i++; 

                powerof2(i,j); 

        } 

} 

Q.2 Calculate factorial of a number using Function Recursion 

 #include "stdio.h" 

int fact(int); 

main() 

{ 

        int x,n; 

        printf("Enter a no"); 

        scanf("%d",&n); 

        x=fact(n); 

        printf("%d",x); 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

} 

int fact(int n) 

{ 

        static int f=1; 

        if(n>0) 

        { 

                f=f*n; 

                fact(n-1); 

        } 

        return f; 

} 

Q.3 Write a program to find sum of digits of a number using function recursion 

 #include "stdio.h" 

int sumofdigits(int); 

main() 

{ 

        int n,x; 

        printf("enter any two numbers"); 

        scanf("%d",&n); 

        x=sumofdigits(n); 

        printf("%d",x); 

} 

int sumofdigits(int n) 

{ 

        static int s=0; 

        if(n>0) 

        { 

                s=s + n%10; 

                n=n/10; 

                sumofdigits(n); 

      } 

        return s; 

} 

Q.4 Write a program to  reverse a number using function recursion 

 #include "stdio.h" 

int reverse(int); 

main() 

{ 

        int n,x; 

        printf("enter any two numbers"); 

        scanf("%d",&n); 

        x=reverse(n); 

        printf("%d",x); 

} 

int reverse(int n) 

{ 

        static int s=0; 

        if(n>0) 

        { 

                s=s*10 + n%10; 

                n=n/10; 

                 reverse(n);    

     } 

        return s; 

} 

Q.5 Check a number is prime or not using Function recursion 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 #include "stdio.h" 

int prime(int); 

main() 

{ 

        int x,n; 

        printf("Enter a no"); 

        scanf("%d",&n); 

        x=prime(n); 

        if(x==2) 

                printf("Prime"); 

        else 

                printf("Not"); 

} 

int prime(int n) 

{ 

        static int i=1,counter=0; 

        if(i<=n) 

        { 

                if(n%i==0) 

                        counter++; 

                i++; 

                prime(n); 

        } 

        return counter; 

} 

Q 6 printing a number as a character string. 

 The recursive solution, in which printd first calls itself to 

cope with any leading digits, then prints the trailing digit. Again, this version can fail on the largest negative number. 

 
#include <stdio.h> 

/* printd: print n in decimal */ 

void printd(int n) 

{ 

if (n < 0) { 

putchar(’-’); 

n = -n; 

} 

if (n / 10) 

printd(n / 10); 

putchar(n % 10 + ’0’); 

} 

Q 7. Quicksort, a sorting algorithm to sort an array  

 We use the middle element of each subarray 

for partitioning. 

/* qsort: sort v[left]...v[right] into increasing order */ 

void qsort(int v[], int left, int right) 

{ 

int i, last; 

void swap(int v[], int i, int j); 

if (left >= right) /* do nothing if array contains */ 

return; /* fewer than two elements */ 

swap(v, left, (left + right)/2); /* move partition elem */ 

last = left; /* to v[0] */ 

for (i = left + 1; i <= right; i++) /* partition */ 

if (v[i] < v[left]) 

swap(v, ++last, i); 

swap(v, left, last); /* restore partition elem */ 

qsort(v, left, last-1); 

qsort(v, last+1, right); 

} 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

We moved the swapping operation into a separate function swap because it occurs three times in qsort. 

/* swap: interchange v[i] and v[j] */ 

void swap(int v[], int i, int j) 

{ 

int temp; 

temp = v[i]; 

v[i] = v[j]; 

v[j] = temp; 

} 

 

ASSIGNMENT 

1 Comment the below while statement 

main() 

{ 

 while(0==0) 

 { 

 

 } 

} 

a. It has syntax error as there is no statement within braces. 

b. It will run forever 

c. It compare 0 with 0 and since they are equal, it will exit the loop 

d. None 

2 Which byte order is followed by Motorola Processors? 

a. Little-Endian 

b. Big-Endian  

c. Bi-Endian   

d. None  

3 How many time while statement is executed 

main() 

{ 

 int i=1; 

 while(i<=5) 

 { 

  printf("Hello,I am in loop"); 

  i++; 

 } 

} 

a. 4 times 

b. 5 times 

c. 6 times 

d. infinite times 

4 How many time display “yes boss” 

main() 

{ 

 int i; 

 for(i=1;i<=30;i+5) 

 { 

  printf("Yes boss"); 

 } 

} 

a. 5 times 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

b. 6 times 

c. infinite times 

c. None 

5 What will be the output? 

main() 

{ 

 int x=3,y=5; 

 x=x++ || ++y; 

 printf("%d %d",x,y); 

} 

a. 5 

b. 6 

c. 1 

d. 0 

6 What will be the output? 

main() 

{ 

 char x=-130; 

 char y=-5; 

 printf("%d ", x+y); 

} 

a. -135 

b. 135 

c. -121 

d. 121 

7 What will be the output? 

Which operator is used both as an operator and keyword? 

a. Right shifting operator  

b. cast operator  

c. sizeof operator 

d. Token pasting operator  

8 Which modifier doubles range of a data types  

a. signed   

b. unsigned   

c. short   

d. long  

9 Find the output  

void main()  

{  

 int num=345,m,sum=0;  

 do  

 {  

  m=num%10;  

  num=num/10;  

  continue;  

  sum=sum*10+m;  

 }  

 while(num!=0);  

 printf("%d",sum);  

} 

a. 3 4 5  

b. 5 4 3   

c. 0  



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

d. None of these 

10 Find the output 

void main() 

{ 

 char ch=‟r‟; 

 if(ch==‟a‟||ch=‟h‟) 

  ch=‟u‟; 

 printf(“%c”,ch); 

} 

a) r 

b) a 

c) u 

d) Compilation error 

11 To execute all switch case statements 

a) Any one of the case statement match with switch condition 

b) First case must match with switch condition 

c) Default case must match with switch condition. 

d) None of these. 

12 The major difference between strcpy() and strncpy() function is 

a. strcpy copy entire string but strncpy  copy only specified number of characters 

b. strcpy copy nul character but strncpy does't copy nul character 

c. strcpy() takes two arguments and strncpy() takes three arguments 

d. None 

13 What is the output 

main() 

{ 

 char x[5]="abc"; 

 char y[ ]="abc"; 

 printf("%d %d",sizeof(x),sizeof(y)); 

} 

a. 5 5  

b. 4 4 

c. 5 4 

d. 3 3 

14 Find the output 

main() 

{ 

 int i; 

 for(i=1;i<=5;i++) 

 { 

  bbsr(); 

 } 

} 

int bbsr() 

{ 

 int x=1; 

 static int y=1; 

 printf("%d %d \n",x,y); 

 x++; 

 y++; 

} 

a. x & y both are incremented from 1 to 5 

b. x is incremented from 1 to 5 , but y is not incremented 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

c. x is not incremented from 1 to 5 , but y is incremented from 1 to 5 

c. both x & y are not incremented 

15 Find the Output 

main() 

{ 

 int i=1; 

 while(i<=5) 

 { 

  int i=100; 

  printf("%d ",i); 

  i++; 

 } 

} 

a. 100 100 100 100 … 

b. 100,101,102,103,… 

c. 1,2,3,4,5 

d. 1,2,3,4,5, … 

16 Find the output 

main() 

{ 

 lit(3); 

} 

int lit(int n) 

{ 

 if(n>0) 

 { 

  printf("%d ",n); 

  lit(--n); 

  lit(--n); 

 } 

} 

a. 3 2 1 1  

b. 0 1 2 1 

c. -1 0 -1 1 

d. none 

17 Which is the following statement is true 

a) Copy of the variable is created when it is passed by reference  

b) Copy of the variable is created when it is passed by value  

c) Created both  

d) Not created in both  

18 Find the output 

 

void main() 

{ 

 int i=4,j=-3; 

 mul(&i,j); 

 printf(“%d %d”,i,j); 

} 

mul(int *a,int b) 

{ 

 *a=*a**a; 

 b=b*b; 

} 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 

a) 4     3 

b) 4     9 

c) 16   -3 

d) None of these 

19 Efficient way of dividing x by 8 is   

 

a) x/8   b) x>>3  

c) x<<3  d) None 

 

20 Which operation done by Microprocessor for the expression.   

  i++; 

a) Read 

b) Write 

c) Both read and write 

d) None 

21 The relational operator == (equality) always returns  

a. 0   

b. 1  

c. 0 or 1  

d.  None  

22 Bitwise operators are applicable only on  

a. integers    

b. integers and characters 

c. integers and floats 

d. integers,floats,and doubles  

23 if( test( ) )  

  i++; 

a) i value is incremented if test function returns 0 

b) i value is incremented if test function returns non-zero 

c) i value is incremented if test function returns nothing 

d) none 

24 what will be the output of the program? 
int f(int x) 
{ 
   if(x <= 4) 
      return x; 
   return f(--x); 
} 
void main() 
{ 
   printf("%d ", f(7));  
} 
a.4567 
b.1 2 3 4 
c.4 
d. Runtime error 

25 Which of the following is a limitation of array? 

a. Array index starts from 0. 

b. Array element can be accessed in pointer format  

c. Array does not supports negative indexing 

d. Array size can‟t be changed during run time. 

26 Find output 

main() 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

{ 

 if((n&n-1)==0) 

 { 

 

 } 

}  

a.it check a number is prime number 

b.it check square root of a number 

c.it check number is power of 2 

d.None 

27 main() 

{ 

 while(!printf("Hello")) 

 { 

  printf("Yes boss"); 

 } 

} 

a. It will print Hello only once 

b. It will print Hello forever 

c. It will printf Hello  Yes boss for ever 

d. No output 

28 Which of the following is right expression 

main() 

{ 

 int x,y; 

 

 x=5*9+3/2; 

  

} 

a. x=add(mul(5,9),div(3,2)) 

b. x=mul(5,9) + div(3,2) 

c. x=mul(5,9) * sum(9,3) + div(3,2) 

d. None 

29 Find output 
main() 
{ 
 int x[5]={10,20,30,40,50}; 
 printf("%d" ,(x+2)[-1]); 
} 
a. 10 
b. 20 
c. 30 
d. garbage 

 

 

 

 

 

 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

UNIT 4: 

POINTERS (2 LECTURES) 

STRUCTURE (4 LECTURES) 

FILE HANDLING(1 LECTURES) 
 

POINTERS  

A pointer is a variable that contains the address of a variable. Pointers are much used in C, partly because they 

are sometimes the only way to express a computation, and partly because they usually lead to more compact 

and efficient code than can be obtained in other ways. Pointers and arrays are closely related; this chapter also 

explores this relationship and shows how to exploit it. 

 

 MEMORY ORGANIZATION 

numbered or addressed memory cells that may be manipulated individually or in contiguous groups. One 

common situation is that any byte can be a char, a pair of one-byte cells can be treated as a short integer, and 

four adjacent bytes form a long. A pointer is a group of cells (often two or four) that can hold an address. So if 

c is a char and p is a pointer that points to it, we could represent the situation this way: 

The unary operator & gives the address of an object, so the statement 

p = &c; 

assigns the address of c to the variable p, and p is said to „„point to‟‟ c. The & operator only applies to objects 

in memory: variables and array elements. It cannot be applied to expressions, constants, or register variables. 

 

The unary operator * is the indirection or dereferencing operator; when applied to a pointer, it accesses the 

object the pointer points to. Suppose that x and y are integers and ip is a pointer to int. This artificial sequence 

shows how to declare a pointer and how to use & and *: 

 

int x = 1, y = 2, z[10]; 

int *ip; /* ip is a pointer to int */ 

ip = &x; /* ip now points to x */ 

y = *ip; /* y is now 1 */ 

*ip = 0; /* x is now 0 */ 

ip = &z[0]; /* ip now points to z[0] */ 

The declaration of x, y, and z are what we‟ve seen all along. The declaration of the pointer ip, 

int *ip; is intended as a mnemonic; it says that the expression *ip is an int. 

 

If ip points to the integer x, then *ip can occur in any context where x could, so 

 *ip = *ip + 10; increments *ip by 10. 

The unary operators * and & bind more tightly than arithmetic operators, so the assignment 

 y = *ip + 1  

takes whatever ip points at, adds 1, and assigns the result to y, while 

 *ip += 1 

increments what ip points to, as do 

 ++*ip 

and 

 (*ip)++ 

The parentheses are necessary in this last example; without them, the expression would increment ip instead of 

what it points to, because unary operators like * and ++ associate right to left. Finally, since pointers are 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

variables, they can be used without dereferencing. For example, if iq is another pointer to int, iq = ip copies 

the contents of ip into iq, thus making iq point to whatever ip pointed to. 

 

Pointers and Arrays: 
In C, there is a strong relationship between pointers and arrays, strong enough that pointers and arrays should 

be discussed simultaneously. Any operation that can be achieved by array subscripting can also be done with 

pointers. The pointer version will in general be faster but, at least to the uninitiated, somewhat harder to 

understand. The declaration 

 int a[10]; 

defines an array of size 10, that is, a block of 10 consecutive objects named a[0], a[1], ...,a[9]. 

 

The notation a[i] refers to the i-th element of the array. If pa is a pointer to an integer, declared as 

int *pa; 

then the assignment 

pa = &a[0]; 

sets pa to point to element zero of a; that is, pa contains the address of a[0]. 

Now the assignment x = *pa will copy the contents of a[0] into x. 

 
 
 
 
 
 
 
 
 
 
 
If pa points to a particular element of an array, then by definition pa+1 points to the next element, pa+i points i 

elements after pa, and pa-i points i elements before. Thus, if pa points to a[0], *(pa+1) refers to the contents of 

a[1], pa+i is the address of a[i], and *(pa+i) is the contents of a[i]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 
ASSIGNMENT 

 
SLNO QUESTIONS 

1 Which concept is called “dereference”? 

 Doing read or write operation in memory using the help of pointer is called dereference 

2 What does maximum address by a pointer refer in TC and GCC compilers? 

 In Turbo C pointer maximum address refers up to 1 MB of memory, whereas in GCC pointer 
maximum address refers up to 4 GB of memory. 

3 What is null pointer? 

 When a pointer refers initial address in memory or 0th address in memory it is called null pointer. 

4 What is wild pointer? 

 When a pointer refers unauthenticated address in memory it is called wild pointer. 

5 What is dangling pointer? 

 A reference that does not actually lead anywhere 

6 What are the different reasons for segmentation fault in C? 

 When segmentation fault occurs in a program, the program is simply terminated. There are 
different reasons for segmentation fault, such as: 

• Dereferencing a wild pointer 

• Working beyond array size 

• Stack overflow 

• Attempts to free array memory 

7 What are near and far pointers in C? 

 Far and near pointers are only introduced in Turbo C compiler. When the pointer refers to an 
address in the same segment it is called near pointer, but when it refers to an address in another 

Segment it is called far pointer. 
8 What are the applications of pointers in C? 

 * Dynamic memory allocation 

• Array implementation 

• Directly accessing the hardware address 

• Calling convention of function 

9 When does core dump occur in C ? 

 A process dumps core when it is terminated by the operating system due to a fault in the program. 
The most typical reason for its occurrence is that the program has accessed an invalid 

Pointer value. Given that you have a sporadic dump; it is likely that you are using an uninitialized 
pointer. 

10 What is the difference between malloc and calloc functions? 

 
Malloc memory allocation is equivalent to a single-dimensional array but calloc memory 
allocation is equivalent to a doubledimensional array. 

11 What is meant by static and dynamic memory allocation in C? 

 Memory allocation in a program is only possible in load time or rum time of the program. The 
memory allocated at compile time is known as static allocation. That allocated at run time is 
called dynamic allocation 12 Why is pointer arithmetic required? 

 Pointer arithmetic is required only to access a particular memory address. 

13 Define in a one-line statement “memory leak”. 

 At any moment if a pointer loses reference of a memory block in the heap it is called memory 
leak. 

 

 

 

 

 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 

Pointers and Function Arguments: 
 

Since C passes arguments to functions by value, there is no direct way for the called function to alter a 

variable in the calling function. For instance, a sorting routine might exchange two out-of-order arguments 

with a function called swap. It is not enough to write swap(a, b); where the swap function is defined as 

void swap(int x, int y) /* WRONG */ 

{ 

int temp; 

temp = x; 

x = y; 

y = temp; 

} 

Because of call by value, swap can‟t affect the arguments a and b in the routine that called it. The function 

above swaps copies of a and b.The way to obtain the desired effect is for the calling program to pass pointers 

to the values to be changed: swap(&a, &b); 

Since the operator & produces the address of a variable, &a is 

a pointer to a. In swap itself, the parameters are declared as 

pointers, and the operands are accessed indirectly through 

them. 

 

void swap(int *px, int *py) /* interchange *px and *py */ 

{ 

int temp; 

temp = *px; 

*px = *py; 

*py = temp; 

} 

 

 

It is possible to pass part of an array to a function, by passing a pointer to the beginning of the subarray. For 

example, if a is an array, f(&a[2]) and f(a+2) both pass to the function f the address of the subarray that starts 

at a[2]. 

Within f, the parameter declaration can read 

f(int arr[]) { ... } 

or 

f(int *arr) { ... } 

So as far as f is concerned, the fact that the parameter refers to part of a larger array is of no consequence. 

 

Q.1 Check a number is prime or not using pointer 

 #include "stdio.h" 
int prime(int *); 
main() 
{ 
        int x,n; 
        printf("Enter a no"); 
        scanf("%d",&n); 
        x=prime(&n); 
        if(x==2) 
                printf("Prime"); 
        else 
                printf("Not"); 
} 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

int prime(int *p) 
{ 
        int i=1,counter=0; 
        while(i<= *p) 
        { 
                if(*p %i==0) 
                        counter++; 
                i++; 
        } 
        return counter; 
} 

Q.2 Sum of all even digits in a given number using pointer 

 #include "stdio.h" 
int SumofEvenDigits(int *); 
main() 
{ 
        int x,n; 
        printf("Enter a no"); 
        scanf("%d",&n); 
        x=SumofEvenDigits(&n); 
        printf("%d",x); 
} 
int SumofEvenDigits(int *p) 
{ 
        int sum=0,r; 
        while(*p>0) 
        { 
                r=*p%10; 
                if(r%2==0) 
                        sum=sum+r; 
                *p=*p/10; 
        } 
        return sum; 
} 

Q.3 Swap between two numbers using pointer 

 #include "stdio.h" 
void  swap(int *,int*); 
main() 
{ 
        int x,a,b; 
        printf("Enter any two no"); 
        scanf("%d%d",&a,&b); 
                printf("Before swap %d %d\n",a,b); 
        swap(&a,&b); 
                printf("After swap %d %d\n",a,b); 
        printf("%d",x); 
} 
void swap(int *p,int *q) 
{ 
        int temp; 
        temp=*p; 
        *p=*q; 
        *q=temp; 
} 

Q.4 Find GCD of  any two number using  pointer 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 #include "stdio.h" 
int gcd(int *,int*); 
main() 
{ 
        int x,a,b; 
        printf("Enter any  two no"); 
        scanf("%d%d",&a,&b); 
        x=gcd(&a,&b); 
        printf("%d",x); 
} 
int gcd(int *p,int *q) 
{ 
        int c; 
        while((c=*p % *q)!=0) 
        { 
                *p=*q; 
                *q=c; 
        } 
        return *q; 
} 

Q.5  Calculate factorial of a number using pointer 

 #include "stdio.h" 
int fact(int *); 
main() 
{ 
        int x,n; 
        printf("Enter a no"); 
        scanf("%d",&n); 
        x=fact(&n); 
        printf("%d",x); 
} 
int fact(int *p) 
{ 
        int f=1; 
        while(*p >0) 
        { 
                f=f* *p; 
                (*p)--; 
        } 
        return f; 
} 

 

ASSIGNMENT& SOLUTION 

q.1 what is the relation between arrays and pointers? 

 array name itself is a pointer which refers the initial address of an array. 

q.2 what is major difference between strcpy and strncpy? 

 strcpy copies the entire string with null character, but strncpy copies only the specified number of 

characters and does not copy the null character. 

q.3 what is the purpose of double-dimensional array? 

 double-dimensional array is suitable to implement the non-linear data structure, such as graph and 

tree. 

q.4 if base address of a double-dimensional array is given, how do we get the address of a particular 

element in an array? 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

(note: if int*[5][5], &*[0][0] is given as 500, what will 

be the address of &*[3[4]) 

 to get the address of a particular element in a double dimensional array, the following formula is 

used. 

address = base address + (row number * column size + column number) * size of the array 

element. 

q.5 what is the difference between character array and string? 

 string is a character array terminated with null character „\0‟. so, a string is a character array but a 

character array is not string. 

q.6 what is the difference between char s[] and char *s? 

 char s[] type can be dereference but char *s type can‟t be dereference 

q.7 what are the limitation of an array in c 

 array in c doesn‟t support negative indexing , and doesn‟t hold desimilar types of elements 

q.8 if array size is not given , then how to access last element of an array 

 sizeof(array)/sizeof(types)-1 

q.9 what is the concept is called “array equivalent pointer” 

 when array is used as the formal parameter of a function is called array equivalent pointer 

q.10 what is the time complexity to insert or delete element in an array 

 o(n) 

q.11 what is the application of an array? 

 application of an array is in implementing different data structures, such as stack, queue, tree, 

graph and searching, sorting. 

q.12 what is the maximum dimension is allowed to an array 

 it depends on memory size 

 

STRUCTURE & UNION: 

A structure is a collection of one or more variables, possibly of different types, grouped together under a 

single name for convenient handling. (Structures are called „„records‟‟ in some languages, notably Pascal.) 

Structures help to organize complicated data, particularly in large programs, because they permit a group of 

related variables to be treated as a unit instead of as separate entities. One traditional example of a structure is 

the payroll record: an employee is described by a set of attributes such as name, address, social security 

number, salary, etc. Some of these in turn could be structures: a name has several components, as does an 

address and even a salary. Another example, more typical for C, comes from graphics: a point is a pair of 

coordinate, a rectangle is a pair of points, and so on. 

 

The main change made by the ANSI standard is to define structure assignment - structures may be copied and 

assigned to, passed to functions, and returned by functions. This has been supported by most compilers for 

many years, but the properties are now precisely defined. Automatic structures and arrays may now also be 

initialized. 

Basics of Structures 
Let us create a few structures suitable for graphics. The basic object is a point, which we will assume has an x 

coordinate and a y coordinate, both integers. 

 

 

The two components can be placed in a structure declared like this: 

struct point { 

int x; 

int y; 

}; 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

The keyword struct introduces a structure declaration, which is a list of declarations enclosed in braces. An 

optional name called a structure tag may follow the word struct (as with point here). The tag names this kind 

of structure, and can be used subsequently as a shorthand for the part of the declaration in braces. The 

variables named in a structure are called members. 

 

A struct declaration defines a type. The right brace that terminates the list of members may be followed by a 

list of variables, just as for any basic type. That is, 

 struct { ... } x, y, z; 

is syntactically analogous to 

 int x, y, z; 

in the sense that each statement declares x, y and z to be variables of the named type and causes space to be 

set aside for them. A structure declaration that is not followed by a list of variables reserves no storage; it 

merely describes a template or shape of a structure. If the declaration is tagged, however, the tag can be used 

later in definitions of instances of the structure. For example, given the declaration of point above, 

  struct point pt; 

defines a variable pt which is a structure of type struct point. A structure can be initialized by following its 

definition with a list of initializers, each a constant expression, for the members: 

  struct maxpt = { 320, 200 }; 

An automatic structure may also be initialized by assignment or by calling a function that returns a structure 

of the right type. A member of a particular structure is referred to in an expression by a construction of the 

form 

  structure-name.member 
The structure member operator „„.‟‟ connects the structure name and the member name. To print the 

coordinates of the point pt, for instance, 

  printf("%d,%d", pt.x, pt.y); 

or to compute the distance from the origin (0,0) to pt, 

double dist, sqrt(double); 

dist = sqrt((double)pt.x * pt.x + (double)pt.y * pt.y); 

Structures can be nested. One representation of a rectangle is a pair of 

points that denote the diagonally opposite corners: 

struct rect { 

struct point pt1;  
struct point pt2; 

}; 

The rect structure contains two point structures. If we declare screen as 

  struct rect screen; 

then screen.pt1.x refer to the x coordinate of the pt1 member of screen. 

 

Structures and Functions: 
The only legal operations on a structure are copying it or assigning to it as a unit, taking its address with &, 

and accessing its members. Copy and assignment include passing arguments to functions and returning 

values from functions as well. Structures may not be compared. A structure may be initialized by a list of 

constant member values; an automatic structure may also be initialized by an assignment. 

Let us investigate structures by writing some functions to manipulate points and rectangles. There are at least 

three possible approaches: pass components separately, pass an entire structure, or pass a pointer to it. Each 

has its good points and bad points. 

 

The first function, makepoint, will take two integers and return a point structure: 

/* makepoint: make a point from x and y components */ 

struct point makepoint(int x, int y) 

{ 

struct point temp; 

temp.x = x; 

temp.y = y; 

return temp; 

} 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

Notice that there is no conflict between the argument name and the member with the same name; indeed the 

re-use of the names stresses the relationship. makepoint can now be used to initialize any structure 

dynamically, or to provide structure arguments to a function: 

 

struct rect screen; 

struct point middle; 

struct point makepoint(int, int); 

screen.pt1 = makepoint(0,0); 

screen.pt2 = makepoint(XMAX, YMAX); 

middle = makepoint((screen.pt1.x + screen.pt2.x)/2, 

(screen.pt1.y + screen.pt2.y)/2); 

The next step is a set of functions to do arithmetic on points. For instance, 

 

/* addpoints: add two points */ 

struct addpoint(struct point p1, struct point p2) 

{ 

p1.x += p2.x; 

p1.y += p2.y; 

return p1; 

} 

Here both the arguments and the return value are structures. We incremented the components in p1 rather 

than using an explicit temporary variable to emphasize that structure parameters are passed by value like any 

others. As another example, the function ptinrect tests whether a point is inside a rectangle, where we have 

adopted the convention that a rectangle includes its left and bottom sides but not its top and right sides: 

/* ptinrect: return 1 if p in r, 0 if not */ 

int ptinrect(struct point p, struct rect r) 

{ 

return p.x >= r.pt1.x && p.x < r.pt2.x 

&& p.y >= r.pt1.y && p.y < r.pt2.y; 

} 

This assumes that the rectangle is presented in a standard form where the pt1 coordinates are less than the pt2 

coordinates. 

 

Arrays of Structures: 
Consider writing a program to count the occurrences of each C keyword. We need an array of character 

strings to hold the names, and an array of integers for the counts. One possibility is to use two parallel arrays, 

keyword and keycount, as in 

 

char *keyword[NKEYS]; 

int keycount[NKEYS]; 

But the very fact that the arrays are parallel suggests a different organization, an array of structures. Each 

keyword is a pair: 

char *word; 

int cout; 

and there is an array of pairs. The structure declaration 

struct key { 

char *word; 

int count; 

} keytab[NKEYS]; 

declares a structure type key, defines an array keytab of structures of this type, and sets aside storage for 

them. Each element of the array is a structure. This could also be written 

struct key { 

char *word; 

int count; 

}; 

struct key keytab[NKEYS]; 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 

 

Unions 

A union is a variable that may hold (at different times) objects of different types and sizes, with the compiler 

keeping track of size and alignment requirements. Unions provide a way to manipulate different kinds of data 

in a single area of storage, without embedding any machine-dependent information in the program. They are 

analogous to variant records in pascal. As an example such as might be found in a compiler symbol table 

manager, suppose that a constant may be an int, a float, or a character pointer. The value of a particular 

constant must be stored in a variable of the proper type, yet it is most convenient for table management if the 

value occupies the same amount of storage and is stored in the same place regardless of its type. This is the 

purpose of a union - a single variable that can legitimately hold any of one of several types. The syntax 

is based on structures: 

union u_tag { 

int ival; 

float fval; 

char *sval; 

} u; 

The variable u will be large enough to hold the largest of the three types; the specific size is implementation-

dependent. Any of these types may be assigned to u and then used in expressions, so long as the usage is 

consistent: the type retrieved must be the type most recently stored. It is the programmer‟s responsibility to 

keep track of which type is currently stored in a union; the results are implementation-dependent if something 

is stored as one type and extracted as another. Syntactically, members of a union are accessed as 

union-name.member 

or 

union-pointer->member 

just as for structures. If the variable utype is used to keep track of the current type stored in u, then one might 

see code such as 

if (utype == INT) 

printf("%d\n", u.ival); 

if (utype == FLOAT) 

printf("%f\n", u.fval); 

if (utype == STRING) 

printf("%s\n", u.sval); 

else 

printf("bad type %d in utype\n", utype); 

Unions may occur within structures and arrays, and vice versa. The notation for accessing a member of a 

union in a structure (or vice versa) is identical to that for nested structures. For example, in the structure array 

defined by 

struct { 

char *name; 

int flags; 

int utype; 

union { 

int ival; 

float fval; 

char *sval; 

} u; 

} symtab[NSYM]; 

 

 

 

SLNO QUESTION 

1 What is the self-referential structure? 

 When a structure is nested within the same structure and nested structure variable is a pointer is 

known as self-referential structure 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

2 What is slack byte of the structure? 

 Every structure allocates memory in form of block, So when the data member of the structure 

doesn‟t properly accommodate in the block ,few bytes of memory is lost in that block, which is 

knows as slack byte or undefined byte of the structure.  

3 What is the difference between structure and union 

 Structure: 

1. Each data members of a structure begins at different location 

2. Size of structure is size of all data members 

Union: 

1. Each data members of a structure begins at same location. 

2. Size of union is longest data member size. 4 What two struc ture variable can‟t be compared? 

 Two structure variable can‟t be compared , because of slack byte. 

5 What do you mean by “active data member “ of a union 

 The first data member of a union is known as the active data member , which should be longest 

data member of the union. 

6 What is application of structure? 

 The application of structure is 

 To create memory link 

 Data encapsulation 

 Bit field 7 What is the use of bit-field? 

 Bit-field is created using a structure. It is used to create the protocol header and developing 

different fonts 

8 What is the application of union? 

 Application of union is : to create a share memory , so locking mechanism will be implemented 

9 How to compare between two different structure? 

 Only using byte-order comparison 

10 What is application of self-referential structure?  

 Self referential structure is used only for memory link. 

 

LABORATORY EXPERIMENT 

Passing structure array to function 

1. Array of Structure can be passed to function as a Parameter. 

2. Function can also return Structure as return type. 

Note: When reference (i.e ampersand)  is not specified in main , so this passing is simple pass by 

value. If you are passing by reference then no need of return type 

 

/* student DEFINITION and Declaration */ 

 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

struct student{ 

long int regno; 

char name[20]; 

char class[10]; 

char branch[10]; 

}; 

 

typedef struct student cse; 

 

/*operation in structure*/ 
 
void record_add(cse[],int); 
 
void record_view(cse[]); 
 
int main() 
{ 
 
cse s[3]; 
int i=0, ch; 
 
while(1) 
{ 
printf("\n1: Add"); 
 
printf("\n2: view"); 
 
printf("\n3: Quit"); 
  
printf("\n Enter your choice"); 
 
scanf("%d",&ch); 
 
switch(ch) 
{ 
 
case 1: 
   /* pass by value */ 
    record_add(s,3); 
     
    break; 
 
case 2: 
  /* call by value */ 
    record_view(s); 
     
    break; 
 
case 3: 
    return 0; 
 
default: 
    printf("\n Invalid choice"); 
 
} 
} 
   



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

return 0; 
} 
 
void record_add(cse std[],int n) 
{ 
int i; 
printf("\n enter student details"); 
for(i=0;i<n;i++) 
{ 
printf("\n Regno: ");scanf("%ld",&std[i].regno);  
 
printf("\n Name: ");scanf("%s",std[i].name);  
 
printf("\n Class: "); scanf("%s",std[i].class); 
 
printf("\n Branch: ");scanf("%s",std[i].branch); 
} 
 
}  
 
void record_view(cse std[]) 
{ 
    int i; 
    printf("\n enter the serial number"); 
    scanf("%d",&i); 
    printf("\n %dth student details ",i); 
 
    printf("\n Regno: %ld",std[i-1].regno); 
     
    printf("\n Name: %s",std[i-1].name);  
 
    printf("\n Class: %s",std[i-1].class); 
 
    printf("\n Branch: %s",std[i-1].branch); 
 
 
} 
 

OUTPUT***** 

1: Add 

2: view 

3: Quit 

 Enter your choice 

1 

 

 enter student details 

 Regno: 1510000010 

 

 Name: RAJESH 

 

 Class: 1stSem 

 

 Branch: CSE 

 

 Regno: 1510000012 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 

 Name: KABITA 

 

 Class: 1stSem 

 

 Branch: ECE 

 

 Regno: 1510000013 

 

 Name: RAHUL 

 

 Class: 1stSem 

 

 Branch: ME 

 

1: Add 

2: view 

3: Quit 

 Enter your choice2 

 

 enter the serial number1 

 

 1th student details 

 Regno: 1510000010 

 Name: RAJESH 

 Class: 1stSem 

 Branch: CSE 

1: Add 

2: view 

3: Quit 

 Enter your choice2 

 

 enter the serial number2 

 

 2th student details 

 Regno: 1510000012 

 Name: KABITA 

 Class: 1stSem 

 Branch: ECE 

1: Add 

2: view 

3: Quit 

 Enter your choice 

 

 

 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

FILE HANDLING 

The examples so far have all read the standard input and written the standard output, which are automatically 

defined for a program by the local operating system. The next step is to write a program that accesses a file 

that is not already connected to the program. One program that illustrates the need for such operations is cat, 

which concatenates a set of named files into the standard output. cat is used for printing files on the screen, 

and as a general-purpose input collector for programs that do not have the capability of accessing files by 

name. For example, the command cat x.c y.c prints the contents of the files x.c and y.c (and nothing else) on 

the standard output. The question is how to arrange for the named files to be read - that is, how to connect the 

external names that a user thinks of to the statements that read the data.  

The rules are simple. Before it can be read or written, a file has to be opened by the library function fopen. 

fopen takes an external name like x.c or y.c, does some housekeeping and negotiation with the operating 

system (details of which needn‟t concern us), and returns a pointer to be used in subsequent reads or writes of 

the file. This pointer, called the file pointer, points to a structure that contains information about the file, such 

as the location of a buffer, the current character position in the buffer, whether the file is being read or written, 

and whether errors or end of file have occurred. Users don‟t need to know the details, because the definitions 

obtained from <stdio.h> include a structure declaration called FILE. The only declaration needed for a file 

pointer is exemplified by 

FILE *fp; 

FILE *fopen(char *name, char *mode); 

This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE. Notice that FILE is a type name, 

like int, not a structure tag; it is defined with a typedef.  

The call to fopen in a program is 

  fp = fopen(name, mode); 

The first argument of fopen is a character string containing the name of the file. The second argument is the 

mode, also a character string, which indicates how one intends to use the file. Allowable modes include read 

("r"), write ("w"), and append ("a"). Some systems distinguish between text and binary files; for the latter, a 

"b" must be appended to the mode string. 

If a file that does not exist is opened for writing or appending, it is created if possible. Opening an existing file 

for writing causes the old contents to be discarded, while opening for appending preserves them. Trying to 

read a file that does not exist is an error, and there may be other causes of error as well, like trying to read a 

file when you don‟t have permission. If there is any error, fopen will return NULL.  

 

The next thing needed is a way to read or write the file once it is open. getc returns the next character from a 

file; it needs the file pointer to tell it which file. 

  int getc(FILE *fp) 

getc returns the next character from the stream referred to by fp; it returns EOF for end of file or error. 

putc is an output function: 

  int putc(int c, FILE *fp) 

putc writes the character c to the file fp and returns the character written, or EOF if an error occurs. Like 

getchar and putchar, getc and putc may be macros instead of functions. 

 

When a C program is started, the operating system environment is responsible for opening three files and 

providing pointers for them. These files are the standard input, the standard output, and the standard error; the 

corresponding file pointers are called stdin, stdout, and stderr, and are declared in <stdio.h>. Normally stdin is 

connected to the keyboard and stdout and stderr are connected to the screen, but stdin and stdout may be 

redirected to files or pipes. 

 

getchar and putchar can be defined in terms of getc, putc, stdin, and stdout as follows: 

#define getchar() getc(stdin) 

#define putchar(c) putc((c), stdout) 

For formatted input or output of files, the functions fscanf and fprintf may be used. These are identical to scanf 

and printf, except that the first argument is a file pointer that specifies the file to be read or written; the format 

string is the second argument. 

int fscanf(FILE *fp, char *format, ...) 

int fprintf(FILE *fp, char *format, ...) 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 

With these preliminaries out of the way, we are now in a position to write the program cat to concatenate files. 

The design is  one that has been found convenient for many programs. If there are command-line arguments, 

they are interpreted as filenames, and processed in order. If there are no arguments, the standard input is 

processed. 

#include <stdio.h> 

/* cat: concatenate files, version 1 */ 

main(int argc, char *argv[]) 

{ 

FILE *fp; 

void filecopy(FILE *, FILE *) 

if (argc == 1) /* no args; copy standard input */ 

filecopy(stdin, stdout); 

else 

while(--argc > 0) 

if ((fp = fopen(*++argv, "r")) == NULL) { 

printf("cat: can‟t open %s\n, *argv); 

return 1; 

} else { 

filecopy(fp, stdout); 

fclose(fp); 

} 

return 0; 

} 

/* filecopy: copy file ifp to file ofp */ 

void filecopy(FILE *ifp, FILE *ofp) 

{ 

int c; 

while ((c = getc(ifp)) != EOF) 

putc(c, ofp); 

} 

The file pointers stdin and stdout are objects of type FILE *. They are constants, however, not variables, so it 

is not possible to assign to them. The function 

  int fclose(FILE *fp) 

is the inverse of fopen, it breaks the connection between the file pointer and the external name that was 

established by fopen, freeing the file pointer for another file. Since most operating systems have some limit on 

the number of files that a program may have open simultaneously, it‟s a good idea to free the file pointers 

when they are no longer needed, as we did in cat. There is also another reason for fclose on an output file - it 

flushes the buffer in which putc is collecting output. fclose is called automatically for each open file when a 

program terminates normally. (You can close stdin and stdout if they are not needed. They can also be 

reassigned by the library function freopen.) 

 

Error Handling - Stderr and Exit 

The treatment of errors in cat is not ideal. The trouble is that if one of the files can‟t be accessed for some 

reason, the diagnostic is printed at the end of the concatenated output. That might be acceptable if the output is 

going to a screen, but not if it‟s going into a file or into another program via a pipeline. 

To handle this situation better, a second output stream, called stderr, is assigned to a program in the same way 

that stdin and stdout are. Output written on stderr normally appears on the screen even if the standard output is 

redirected. 

Let us revise cat to write its error messages on the standard error. 

  #include <stdio.h> 

/* cat: concatenate files, version 2 */ 

main(int argc, char *argv[]) 

{ 

FILE *fp; 

void filecopy(FILE *, FILE *); 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

char *prog = argv[0]; /* program name for errors */ 

if (argc == 1 ) /* no args; copy standard input */ 

filecopy(stdin, stdout); 

else 

while (--argc > 0) 

if ((fp = fopen(*++argv, "r")) == NULL) { 

fprintf(stderr, "%s: can‟t open %s\n", 

prog, *argv); 

exit(1); 

} else { 

filecopy(fp, stdout); 

fclose(fp); 

} 

if (ferror(stdout)) { 

fprintf(stderr, "%s: error writing stdout\n", prog); 

exit(2); 

} 

exit(0); 

} 

The program signals errors in two ways. First, the diagnostic output produced by fprintf goes to stderr, so it 

finds its way to the screen instead of disappearing down a pipeline or into an output file. We included the 

program name, from argv[0], in the message, so if this program is used with others, the source of an error is 

identified. 

 
SLNO QUESTIONS 
1 What is the difference between EOF and End Of File? 

 EOF is a macro , whose expansion values is -1, where as End Of File is the ASCII value of 
CTRL+Z character (26) , which represents end of file character. 

2 What is the difference between “w” and “w+” 
3 “w” and “w+” both are used as the file opening modes. In “w” mode program only does write 

operations but in “w+” mode program does both read and write operation. 
4 What are the different types of files 
5 Linux operating system supports seven different types of file, such 

Regular files 
Directory file 
FIFO file 
Character special file 
Block special file 

Link file 

Socket file 

6 What are the different file opening modes 

 There are three different file opening modes such as, 

Read mode 
Write mode 
Append mode 7 What is the difference between fseek and lseek 

 fseek and lseek , both are used to transfer the control to any position of a file, where as the fseek is 
a standard library function and lseek is a system call. 

8 What is the difference between file and directory 

 File is name reference to an inode number in disk, where it contains data. And directory also the 
name reference of inode number in disk , where it contains file and directory. 

9 What is file system? 

 File system is the data structure used by the operating system to organize files and directory. 
10 What are the active file pointer in C 

 In linux file system supports two different active file pointer in C, such as *__IO __ptr_read and* 
__IO__ptr_write  

11 What is the maximum size of a file 

 The size of the file depends on the file system used by the operating system 

 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

LABORATORY EXPERIMENT 

File handling in doing student details operation 

 

******SOURCE CODE*** 

#include<stdio.h> 

/* student details */ 

 

struct student{ 

long int regno; 

char name[20]; 

char class[10]; 

char branch[10]; 

}; 

 

typedef struct student cse; 

/*list of global files that can be access form anywhere in program*/ 

FILE *fp; 

char path[100]="C:\\Users\\sony\\Desktop\\novel_computer_virus\\"; 

/*operation in structure*/ 

 
void record_add(cse[],int); 
 
void record_view(); 
 
int main() 
{ 
cse s[2]; 
int i=0, ch; 
 
while(1) 
{ 
printf("\n1: Add"); 
 
printf("\n2: view"); 
 
printf("\n3: Quit"); 
  
printf("\n Enter your choice"); 
 
scanf("%d",&ch); 
 
switch(ch) 
{ 
 
case 1: 
   /* pass by value */ 
    record_add(s,2); 
     
    break; 
 
case 2: 
  /* call by value */ 
    record_view(); 
     
    break; 
 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

case 3: 
    return 0; 
 
default: 
    printf("\n Invalid choice"); 
 
} 
} 
   
return 0; 
} 
 
void record_add(cse std[],int n) 
{ 
int i; 
char temp[100]; 
strcpy(temp,path); 
strcat(temp,"HIT_Student.dat"); 
 
printf("\n enter student details"); 
for(i=0;i<n;i++) 
{ 
fp=fopen(temp,"ab+"); 
 
printf("\n Regno: ");scanf("%ld",&std[i].regno);  
 
printf("\n Name: ");scanf("%s",std[i].name);  
 
printf("\n Class: "); scanf("%s",std[i].class); 
 
printf("\n Branch: ");scanf("%s",std[i].branch); 
 
fseek(fp,0,SEEK_END); 
fwrite(&std[i],sizeof(std[i]),1,fp); 
fclose(fp); 
 
printf("The record is sucessfully saved\n"); 
} 
 
}  
 
void record_view() 
{ 
    int i=0; 
    char temp[100]; 
     
    cse std;  
     
     
    strcpy(temp,path); 
    strcat(temp,"HIT_Student.dat"); 
 
    fp=fopen(temp,"rb"); 
     
    while(fread(&std,sizeof(std),1,fp)==1) 
    { 
   i++; 
    printf("\n %dth student details ",i); 
 
    printf("\n Regno: %ld",std.regno); 
     
    printf("\n Name: %s",std.name);  



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 
    printf("\n Class: %s",std.class); 
 
    printf("\n Branch: %s",std.branch); 
 
}  
fclose(fp); 

} 
UNIT 5 

BASIC ALGORITHMS (6 LECTURES) 

Searching (Linear and Binary), Basic Sorting Algorithms (Bubble sort) 

Write and explain linear search procedure or algorithm with a suitable example. 

Linear search technique is also known as sequential search technique. The linear search is a method of searching 

an element in a list in sequence. In this method, the array is searched for the required element from the 

beginning of the list/array or from the last element to first element of array and continues until the item is found 

or the entire list/array has been searched.  

Algorithm:  

Step 1: set-up a flag to indicate “element not found” 

Step 2: Take the first element in the list  

Step 3: If the element in the list is equal to the desired element  

  Set flag to “element found”  

  Display the message “element found in the list”  

  Go to step 6  

Step 4: If it is not the end of list,  

  Take the next element in the list  

  Go to step 3  

Step 5: If the flag is “element not found”  

           Display the message “element not found” 

 Step 6: End of the Algorithm 

Binary search 

Formulate recursive algorithm for binary search with its timing analysis. Binary search is quicker than the linear 

search. However, it cannot be applied on unsorted data structure. The binary search is based on the approach 

divide-and-conquer. The binary search starts by testing the data in the middle element of the array. This 

determines target is whether in the first half or second half. If target is in first half, we do not need to check the 

second half and if it is in second half no need to check in first half. Similarly we repeat this process until we find 

target in the list or not found from the list. Here we need 3 variables to identify first, last and middle elements.  

 

 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

To implement binary search method, the elements must be in sorted order. Search is performed as follows:  

 The key is compared with item in the middle position of an array  

 If the key matches with item, return it and stop 

  If the key is less than mid positioned item, then the item to be found must be in first half of array, otherwise it 

must be in second half of array.  

 Repeat the procedure for lower (or upper half) of array until the element is found. 

 

 Recursive Algorithm: 

 Binary_Search(a,key,lb,ub) 

Begin 

 Step 1: [initialization] lb=0 ub=n-1;  

Step 2: [search for the item] Repeat through step 4 while lower bound(lb) is less than upper bound.  

Step 3: [obtain the index of middle value] mid = (lb+ub)/2  

Step 4: [compare to search for item] 

   if(key < a[mid]) then  

      ub=mid-1  

               otherwise if( key > a[mid]) then  

                   lb=mid+1;  

            otherwise if(key==a*mid+) Write “match found”  

                 return (mid)  

          return Binary_Search(a,key,lb,ub)  

Step 5: *unsuccessful search+ Write “match not found” S 

Step 6: [end of algorithm] 

 

Explain the algorithm for bubble sort and give a suitable example.  

In bubble sort method the list is divided into two sub-lists sorted and unsorted. The smallest element is bubbled 

from unsorted sub-list. After moving the smallest element the imaginary wall moves one element ahead. The 

bubble sort was originally written to bubble up the highest element in the list. But there is no difference whether 

highest / lowest element is bubbled. This method is easy to understand but time consuming. In this type, two 

successive elements are compared and swapping is done. Thus, step-by-step entire array elements are checked. 

Given a list of ‘n’ elements the bubble sort requires up to n-1 passes to sort the data. 

 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 

 

 

Algorithm for Bubble Sort: Bubble_Sort ( A [ ] , N )  

Step 1 : Repeat For P = 1 to N – 1 Begin  

Step 2 : Repeat For J = 1 to N – P Begin  

Step 3 : If ( A [ J ] < A [ J – 1 ] ) Swap ( A [ J ] , A [ J – 1 ] )  

             End For  

         End For  

Step 4 : Exit 

 

Example: A list of unsorted elements are: 10 47 12 54 19 23 (Bubble up for highest value shown here) as show in 

above figure. 

 

Q.1 Write a program for linear search 

 #include "stdio.h" 
int linearsearch(int [],int,int); 
main() 
{ 
 int x[8]={10,20,30,40,50,60,70,80}; 
 int i,n,status; 
 printf("enter number to search"); 
 scanf("%d",&n); 
 status=binarysearch(x,8,n); 
 if(status==1) 
  printf("found"); 
 else 
  printf("Not found"); 
} 
int binarysearch(int x[],int size,int n) 
{ 
 int i; 
 for(i=0;i<size;i++) 
 { 
  if(n==x[i]) 
   return 1; 
   
 } 
 return 0; 
} 

Q.2  Write a program for binary Search 

 #include "stdio.h" 
int binarysearch(int [],int,int,int); 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

main() 
{ 
 int x[8]={10,20,30,40,50,60,70,80}; 
 int i,n,status; 
 printf("enter number to search"); 
 scanf("%d",&n); 
 status=binarysearch(x,0,7,n); 
 if(status==1) 
  printf("found"); 
 else 
  printf("Not found"); 
} 
int binarysearch(int x[],int low,int up,int n) 
{ 
 int mid; 
  while(low<=up) 
   { 
  mid=(low+up)/2; 
  if(n==x[mid]) 
   return 1; 
  else 
  if(n < x[mid]) 
   up=mid-1; 
  else 
   low=mid+1; 
   } 
 return 0; 
} 

Q.3 Write a program for bubble sort 

 #include “stdio.h” 
Void bubble_sort(int [],int); 
main() 
{ 
        int a[5]={4,9,40,2,25}; 
        int i; 
        bubble_sort(a,5); 
        for(i=0;i<5;i++) 
                printf("%d ",a[i]); 
} 
 
void bubble_sort(int a[5],int size) 
{ 
        int i,j,temp; 
        for(i=0;i<s;i++) 
        { 
                for(j=0;j<s-i;j++) 
                { 
                        if(a[j]>a[j+1]) 
                        { 
                                temp=a[j]; 
                                a[j]=a[j+1]; 
                                a[j+1]=temp; 
                        } 
                } 
        } 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

} 

Q.4 Write a program for linear sort 

 #include “stdio.h” 
void linear_sort(int [],int); 
main() 
{ 
        int a[5]={4,9,40,2,25}; 
        int i; 
        bubble_sort(a,5); 
        for(i=0;i<5;i++) 
                printf("%d ",a[i]); 
} 
 
void linear_sort(int a[5],int size) 
{ 
        int i,j,temp; 
        for(i=0;i<s;i++) 
        { 
                for(j=i+1;j<s;j++) 
                { 
                        if(a[i]>a[j]) 
                        { 
                                temp=a[i]; 
                                a[i]=a[j]; 
                                a[j]=temp; 
                        } 
                } 
        } 
} 

Q.5 Write a program to insert an element in appropriate position of sorted array 

 #include "stdio.h" 
main() 
{ 
        int x[8]; 
        int i,j,n; 
        printf("Enter the elements for an array in sorted order"); 
        for(i=0;i<8;i++) 
        { 
                scanf("%d",&x[i]); 
        } 
        printf("Enter the element to insert"); 
        scanf("%d",&n); 
        i=0; 
        while(i<8 && n>x[i]) 
        { 
                i++; 
        } 
        for(j=7;j>i;j--) 
                x[j]=x[j-1]; 
        x[j]=n; 
        for(i=0;i<8;i++) 
                printf("%d ",x[i]); 
} 

SURPRISE TEST 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

Question and Answer 

 

1. What are data type qualifiers? 

const and volatile both are used for data type qualifiers. Const makes a variable read-only type. But 

volatile used to modify constant value using pointer during compiler optimization.  

2. What is the difference between call by value and call by reference? 

In case of call by value , the actual argument value can‟t be changed , but in case of call by address the 

actual argument value can be changed. 

3. Can modulus operator be applied to float variables? 

No 

4. What is the importance of main( ) in C language? 

Execution of a c program begins from main function and main function pass control to other function for 

execution. 

5. What do you mean by structured programming approach? 

 

6. What is the use of sizeof operator? 

 

sizeof is an operator which shows how much memory is reserved by different variable or object. 

MISCELLANEOUS 

STORAGE CLASS, HEADER FILES, FILE INCLUSION 

 

Storage Classes 

SLNO QUESTIONS SLNO QUESTIONS 

1 What is storage class? 4 Why pointer doesn‟t refer a register variable? 

 Storage class is a data structure used by every C 
compiler which decides the scope,life ,default 
initial value and storage of a variable and 
functions. 

 Registers are used as the memory element of the 

microprocessor. They have no address, So pointer 
doesn‟t refers to a register variable. 

2 What is the difference between program scoping 
and file scoping 

5 What is the use static storage class in C? 
2 What is the difference between program scoping 

and file scoping 
 Static is used in two different places, such as 

To avoid the reinitialisation : when static is used as the 
local variable 

File scoping: when static is used as global variable. 

 Program scoping: If a variable or function is 
defined in one file, and that can be accessed in 
other file of a C program, is known as program 
scoping. 

File scoping: If a variable or function is defined 
in one file, and that can‟t be accessed in other file 
of a C program, but only can be access in same 
file, is known as file scoping. 

Static is used in two different places, such as 

To avoid the reinitialisation : when static is used as the 
local variable 

File scoping: when static is used as global variable. 

3 What is difference between writing static as local 
and global variable 

6 What are the different scope rules in C? Different scope 
rules in C is 

 Static is used in two different places, such as 

Static is used in two different places, such as 

To avoid the reinitialisation : when static is used 
as the local variable 

File scoping: when static is used as global 
variable. 

 Program scoping 

File scoping 

Function scoping 

Block scoping 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

 

Header files: 

Let is now consider dividing the calculator program into several source files, as it might be is each of the 

components were substantially bigger. The main function would go in one file, which we will call main.c; 

push, pop, and their variables go into a second file, stack.c; getop goes into a third, getop.c. Finally, getch 

and ungetch go into a fourth file, getch.c; we separate them from the others because they would come from a 

separately-compiled library in a realistic program. There is one more thing to worry about - the definitions 

and declarations shared among files. As much as possible, we want to centralize this, so that there is only one 

copy to get and keep right as the program evolves. Accordingly, we will place this common material in a 

header file, calc.h, which will be included as necessary. (The #include line is described in Section  

 

 

The resulting program then looks like this: 

 

Compile and load a C program that resides on multiple source files 

The mechanics of how to compile and load a C program that resides on multiple source files vary from one system 
to the next. On the UNIX system, for example, the cc command mentioned in Chapter 1 does the job. Suppose that 
the three functions are stored in three files called main.c, getline.c, and strindex.c. Then the command  

  cc main.c getline.c strindex.c 

compiles the three files, placing the resulting object code in files main.o, getline.o, and strindex.o, then loads them 
all into an executable file called a.out. If there is an error, say in main.c, the file can be recompiled by itself and the 
result loaded with the previous object files, with the command 

cc main.c getline.o strindex.o 

The cc command uses the „„.c‟‟ versus „„.o‟‟ naming convention to distinguish source files from object files. 



Lecture Notes                     Prof. Rati Ranjan Sahoo               Subject: PPSC            B.Tech, 2nd Sem   

File inclusion: 

File inclusion makes it easy to handle collections of #defines and declarations (among other things). Any 

source line of the form 

#include "filename" 

or 

#include <filename> 

is replaced by the contents of the file filename. If the filename is quoted, searching for the file typically begins 

where the source program was found; if it is not found there, or if the name is enclosed in < and >, searching 

follows an implementation-defined rule to find the file. An included file may itself contain #include lines. 

There are often several #include lines at the beginning of a source file, to include common #define statements 

and extern declarations, or to access the function prototype declarations for library functions from headers like 

<stdio.h>. (Strictly speaking, these need not be files; the details of how headers are accessed are 

implementation-dependent.) 

 

 


